Server IP : 192.168.23.10 / Your IP : 18.219.182.130 Web Server : Apache System : Linux echo.premieradvertising.com 5.14.0-362.8.1.el9_3.x86_64 #1 SMP PREEMPT_DYNAMIC Tue Nov 7 14:54:22 EST 2023 x86_64 User : rrrallyteam ( 1049) PHP Version : 8.1.31 Disable Function : exec,passthru,shell_exec,system MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : OFF Directory (0755) : /usr/share/../include/drm/ |
[ Home ] | [ C0mmand ] | [ Upload File ] |
---|
/* SPDX-License-Identifier: MIT */ /* * Copyright © 2023 Intel Corporation */ #ifndef _XE_DRM_H_ #define _XE_DRM_H_ #include "drm.h" #if defined(__cplusplus) extern "C" { #endif /* * Please note that modifications to all structs defined here are * subject to backwards-compatibility constraints. * Sections in this file are organized as follows: * 1. IOCTL definition * 2. Extension definition and helper structs * 3. IOCTL's Query structs in the order of the Query's entries. * 4. The rest of IOCTL structs in the order of IOCTL declaration. */ /** * DOC: Xe Device Block Diagram * * The diagram below represents a high-level simplification of a discrete * GPU supported by the Xe driver. It shows some device components which * are necessary to understand this API, as well as how their relations * to each other. This diagram does not represent real hardware:: * * ┌──────────────────────────────────────────────────────────────────┐ * │ ┌──────────────────────────────────────────────────┐ ┌─────────┐ │ * │ │ ┌───────────────────────┐ ┌─────┐ │ │ ┌─────┐ │ │ * │ │ │ VRAM0 ├───┤ ... │ │ │ │VRAM1│ │ │ * │ │ └───────────┬───────────┘ └─GT1─┘ │ │ └──┬──┘ │ │ * │ │ ┌──────────────────┴───────────────────────────┐ │ │ ┌──┴──┐ │ │ * │ │ │ ┌─────────────────────┐ ┌─────────────────┐ │ │ │ │ │ │ │ * │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │ * │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │RCS0 │ │BCS0 │ │ │ │ │ │ │ │ │ * │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │ * │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │ * │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │VCS0 │ │VCS1 │ │ │ │ │ │ │ │ │ * │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │ * │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │ * │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │VECS0│ │VECS1│ │ │ │ │ │ ... │ │ │ * │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │ * │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │ * │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │CCS0 │ │CCS1 │ │ │ │ │ │ │ │ │ * │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │ * │ │ │ └─────────DSS─────────┘ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │ * │ │ │ │ │CCS2 │ │CCS3 │ │ │ │ │ │ │ │ │ * │ │ │ ┌─────┐ ┌─────┐ ┌─────┐ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │ * │ │ │ │ ... │ │ ... │ │ ... │ │ │ │ │ │ │ │ │ │ * │ │ │ └─DSS─┘ └─DSS─┘ └─DSS─┘ └─────Engines─────┘ │ │ │ │ │ │ │ * │ │ └───────────────────────────GT0────────────────┘ │ │ └─GT2─┘ │ │ * │ └────────────────────────────Tile0─────────────────┘ └─ Tile1──┘ │ * └─────────────────────────────Device0───────┬──────────────────────┘ * │ * ───────────────────────┴────────── PCI bus */ /** * DOC: Xe uAPI Overview * * This section aims to describe the Xe's IOCTL entries, its structs, and other * Xe related uAPI such as uevents and PMU (Platform Monitoring Unit) related * entries and usage. * * List of supported IOCTLs: * - &DRM_IOCTL_XE_DEVICE_QUERY * - &DRM_IOCTL_XE_GEM_CREATE * - &DRM_IOCTL_XE_GEM_MMAP_OFFSET * - &DRM_IOCTL_XE_VM_CREATE * - &DRM_IOCTL_XE_VM_DESTROY * - &DRM_IOCTL_XE_VM_BIND * - &DRM_IOCTL_XE_EXEC_QUEUE_CREATE * - &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY * - &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY * - &DRM_IOCTL_XE_EXEC * - &DRM_IOCTL_XE_WAIT_USER_FENCE */ /* * xe specific ioctls. * * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset * against DRM_COMMAND_BASE and should be between [0x0, 0x60). */ #define DRM_XE_DEVICE_QUERY 0x00 #define DRM_XE_GEM_CREATE 0x01 #define DRM_XE_GEM_MMAP_OFFSET 0x02 #define DRM_XE_VM_CREATE 0x03 #define DRM_XE_VM_DESTROY 0x04 #define DRM_XE_VM_BIND 0x05 #define DRM_XE_EXEC_QUEUE_CREATE 0x06 #define DRM_XE_EXEC_QUEUE_DESTROY 0x07 #define DRM_XE_EXEC_QUEUE_GET_PROPERTY 0x08 #define DRM_XE_EXEC 0x09 #define DRM_XE_WAIT_USER_FENCE 0x0a /* Must be kept compact -- no holes */ #define DRM_IOCTL_XE_DEVICE_QUERY DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_DEVICE_QUERY, struct drm_xe_device_query) #define DRM_IOCTL_XE_GEM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_CREATE, struct drm_xe_gem_create) #define DRM_IOCTL_XE_GEM_MMAP_OFFSET DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_MMAP_OFFSET, struct drm_xe_gem_mmap_offset) #define DRM_IOCTL_XE_VM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_VM_CREATE, struct drm_xe_vm_create) #define DRM_IOCTL_XE_VM_DESTROY DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_DESTROY, struct drm_xe_vm_destroy) #define DRM_IOCTL_XE_VM_BIND DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_BIND, struct drm_xe_vm_bind) #define DRM_IOCTL_XE_EXEC_QUEUE_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_CREATE, struct drm_xe_exec_queue_create) #define DRM_IOCTL_XE_EXEC_QUEUE_DESTROY DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_DESTROY, struct drm_xe_exec_queue_destroy) #define DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_GET_PROPERTY, struct drm_xe_exec_queue_get_property) #define DRM_IOCTL_XE_EXEC DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC, struct drm_xe_exec) #define DRM_IOCTL_XE_WAIT_USER_FENCE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_WAIT_USER_FENCE, struct drm_xe_wait_user_fence) /** * DOC: Xe IOCTL Extensions * * Before detailing the IOCTLs and its structs, it is important to highlight * that every IOCTL in Xe is extensible. * * Many interfaces need to grow over time. In most cases we can simply * extend the struct and have userspace pass in more data. Another option, * as demonstrated by Vulkan's approach to providing extensions for forward * and backward compatibility, is to use a list of optional structs to * provide those extra details. * * The key advantage to using an extension chain is that it allows us to * redefine the interface more easily than an ever growing struct of * increasing complexity, and for large parts of that interface to be * entirely optional. The downside is more pointer chasing; chasing across * the boundary with pointers encapsulated inside u64. * * Example chaining: * * .. code-block:: C * * struct drm_xe_user_extension ext3 { * .next_extension = 0, // end * .name = ..., * }; * struct drm_xe_user_extension ext2 { * .next_extension = (uintptr_t)&ext3, * .name = ..., * }; * struct drm_xe_user_extension ext1 { * .next_extension = (uintptr_t)&ext2, * .name = ..., * }; * * Typically the struct drm_xe_user_extension would be embedded in some uAPI * struct, and in this case we would feed it the head of the chain(i.e ext1), * which would then apply all of the above extensions. */ /** * struct drm_xe_user_extension - Base class for defining a chain of extensions */ struct drm_xe_user_extension { /** * @next_extension: * * Pointer to the next struct drm_xe_user_extension, or zero if the end. */ __u64 next_extension; /** * @name: Name of the extension. * * Note that the name here is just some integer. * * Also note that the name space for this is not global for the whole * driver, but rather its scope/meaning is limited to the specific piece * of uAPI which has embedded the struct drm_xe_user_extension. */ __u32 name; /** * @pad: MBZ * * All undefined bits must be zero. */ __u32 pad; }; /** * struct drm_xe_ext_set_property - Generic set property extension * * A generic struct that allows any of the Xe's IOCTL to be extended * with a set_property operation. */ struct drm_xe_ext_set_property { /** @base: base user extension */ struct drm_xe_user_extension base; /** @property: property to set */ __u32 property; /** @pad: MBZ */ __u32 pad; /** @value: property value */ __u64 value; /** @reserved: Reserved */ __u64 reserved[2]; }; /** * struct drm_xe_engine_class_instance - instance of an engine class * * It is returned as part of the @drm_xe_engine, but it also is used as * the input of engine selection for both @drm_xe_exec_queue_create and * @drm_xe_query_engine_cycles * * The @engine_class can be: * - %DRM_XE_ENGINE_CLASS_RENDER * - %DRM_XE_ENGINE_CLASS_COPY * - %DRM_XE_ENGINE_CLASS_VIDEO_DECODE * - %DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE * - %DRM_XE_ENGINE_CLASS_COMPUTE * - %DRM_XE_ENGINE_CLASS_VM_BIND - Kernel only classes (not actual * hardware engine class). Used for creating ordered queues of VM * bind operations. */ struct drm_xe_engine_class_instance { #define DRM_XE_ENGINE_CLASS_RENDER 0 #define DRM_XE_ENGINE_CLASS_COPY 1 #define DRM_XE_ENGINE_CLASS_VIDEO_DECODE 2 #define DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE 3 #define DRM_XE_ENGINE_CLASS_COMPUTE 4 #define DRM_XE_ENGINE_CLASS_VM_BIND 5 /** @engine_class: engine class id */ __u16 engine_class; /** @engine_instance: engine instance id */ __u16 engine_instance; /** @gt_id: Unique ID of this GT within the PCI Device */ __u16 gt_id; /** @pad: MBZ */ __u16 pad; }; /** * struct drm_xe_engine - describe hardware engine */ struct drm_xe_engine { /** @instance: The @drm_xe_engine_class_instance */ struct drm_xe_engine_class_instance instance; /** @reserved: Reserved */ __u64 reserved[3]; }; /** * struct drm_xe_query_engines - describe engines * * If a query is made with a struct @drm_xe_device_query where .query * is equal to %DRM_XE_DEVICE_QUERY_ENGINES, then the reply uses an array of * struct @drm_xe_query_engines in .data. */ struct drm_xe_query_engines { /** @num_engines: number of engines returned in @engines */ __u32 num_engines; /** @pad: MBZ */ __u32 pad; /** @engines: The returned engines for this device */ struct drm_xe_engine engines[]; }; /** * enum drm_xe_memory_class - Supported memory classes. */ enum drm_xe_memory_class { /** @DRM_XE_MEM_REGION_CLASS_SYSMEM: Represents system memory. */ DRM_XE_MEM_REGION_CLASS_SYSMEM = 0, /** * @DRM_XE_MEM_REGION_CLASS_VRAM: On discrete platforms, this * represents the memory that is local to the device, which we * call VRAM. Not valid on integrated platforms. */ DRM_XE_MEM_REGION_CLASS_VRAM }; /** * struct drm_xe_mem_region - Describes some region as known to * the driver. */ struct drm_xe_mem_region { /** * @mem_class: The memory class describing this region. * * See enum drm_xe_memory_class for supported values. */ __u16 mem_class; /** * @instance: The unique ID for this region, which serves as the * index in the placement bitmask used as argument for * &DRM_IOCTL_XE_GEM_CREATE */ __u16 instance; /** * @min_page_size: Min page-size in bytes for this region. * * When the kernel allocates memory for this region, the * underlying pages will be at least @min_page_size in size. * Buffer objects with an allowable placement in this region must be * created with a size aligned to this value. * GPU virtual address mappings of (parts of) buffer objects that * may be placed in this region must also have their GPU virtual * address and range aligned to this value. * Affected IOCTLS will return %-EINVAL if alignment restrictions are * not met. */ __u32 min_page_size; /** * @total_size: The usable size in bytes for this region. */ __u64 total_size; /** * @used: Estimate of the memory used in bytes for this region. * * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable * accounting. Without this the value here will always equal * zero. */ __u64 used; /** * @cpu_visible_size: How much of this region can be CPU * accessed, in bytes. * * This will always be <= @total_size, and the remainder (if * any) will not be CPU accessible. If the CPU accessible part * is smaller than @total_size then this is referred to as a * small BAR system. * * On systems without small BAR (full BAR), the probed_size will * always equal the @total_size, since all of it will be CPU * accessible. * * Note this is only tracked for DRM_XE_MEM_REGION_CLASS_VRAM * regions (for other types the value here will always equal * zero). */ __u64 cpu_visible_size; /** * @cpu_visible_used: Estimate of CPU visible memory used, in * bytes. * * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable * accounting. Without this the value here will always equal * zero. Note this is only currently tracked for * DRM_XE_MEM_REGION_CLASS_VRAM regions (for other types the value * here will always be zero). */ __u64 cpu_visible_used; /** @reserved: Reserved */ __u64 reserved[6]; }; /** * struct drm_xe_query_mem_regions - describe memory regions * * If a query is made with a struct drm_xe_device_query where .query * is equal to DRM_XE_DEVICE_QUERY_MEM_REGIONS, then the reply uses * struct drm_xe_query_mem_regions in .data. */ struct drm_xe_query_mem_regions { /** @num_mem_regions: number of memory regions returned in @mem_regions */ __u32 num_mem_regions; /** @pad: MBZ */ __u32 pad; /** @mem_regions: The returned memory regions for this device */ struct drm_xe_mem_region mem_regions[]; }; /** * struct drm_xe_query_config - describe the device configuration * * If a query is made with a struct drm_xe_device_query where .query * is equal to DRM_XE_DEVICE_QUERY_CONFIG, then the reply uses * struct drm_xe_query_config in .data. * * The index in @info can be: * - %DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID - Device ID (lower 16 bits) * and the device revision (next 8 bits) * - %DRM_XE_QUERY_CONFIG_FLAGS - Flags describing the device * configuration, see list below * * - %DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM - Flag is set if the device * has usable VRAM * - %DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT - Minimal memory alignment * required by this device, typically SZ_4K or SZ_64K * - %DRM_XE_QUERY_CONFIG_VA_BITS - Maximum bits of a virtual address * - %DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY - Value of the highest * available exec queue priority */ struct drm_xe_query_config { /** @num_params: number of parameters returned in info */ __u32 num_params; /** @pad: MBZ */ __u32 pad; #define DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID 0 #define DRM_XE_QUERY_CONFIG_FLAGS 1 #define DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM (1 << 0) #define DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT 2 #define DRM_XE_QUERY_CONFIG_VA_BITS 3 #define DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY 4 /** @info: array of elements containing the config info */ __u64 info[]; }; /** * struct drm_xe_gt - describe an individual GT. * * To be used with drm_xe_query_gt_list, which will return a list with all the * existing GT individual descriptions. * Graphics Technology (GT) is a subset of a GPU/tile that is responsible for * implementing graphics and/or media operations. * * The index in @type can be: * - %DRM_XE_QUERY_GT_TYPE_MAIN * - %DRM_XE_QUERY_GT_TYPE_MEDIA */ struct drm_xe_gt { #define DRM_XE_QUERY_GT_TYPE_MAIN 0 #define DRM_XE_QUERY_GT_TYPE_MEDIA 1 /** @type: GT type: Main or Media */ __u16 type; /** @tile_id: Tile ID where this GT lives (Information only) */ __u16 tile_id; /** @gt_id: Unique ID of this GT within the PCI Device */ __u16 gt_id; /** @pad: MBZ */ __u16 pad[3]; /** @reference_clock: A clock frequency for timestamp */ __u32 reference_clock; /** * @near_mem_regions: Bit mask of instances from * drm_xe_query_mem_regions that are nearest to the current engines * of this GT. * Each index in this mask refers directly to the struct * drm_xe_query_mem_regions' instance, no assumptions should * be made about order. The type of each region is described * by struct drm_xe_query_mem_regions' mem_class. */ __u64 near_mem_regions; /** * @far_mem_regions: Bit mask of instances from * drm_xe_query_mem_regions that are far from the engines of this GT. * In general, they have extra indirections when compared to the * @near_mem_regions. For a discrete device this could mean system * memory and memory living in a different tile. * Each index in this mask refers directly to the struct * drm_xe_query_mem_regions' instance, no assumptions should * be made about order. The type of each region is described * by struct drm_xe_query_mem_regions' mem_class. */ __u64 far_mem_regions; /** @reserved: Reserved */ __u64 reserved[8]; }; /** * struct drm_xe_query_gt_list - A list with GT description items. * * If a query is made with a struct drm_xe_device_query where .query * is equal to DRM_XE_DEVICE_QUERY_GT_LIST, then the reply uses struct * drm_xe_query_gt_list in .data. */ struct drm_xe_query_gt_list { /** @num_gt: number of GT items returned in gt_list */ __u32 num_gt; /** @pad: MBZ */ __u32 pad; /** @gt_list: The GT list returned for this device */ struct drm_xe_gt gt_list[]; }; /** * struct drm_xe_query_topology_mask - describe the topology mask of a GT * * This is the hardware topology which reflects the internal physical * structure of the GPU. * * If a query is made with a struct drm_xe_device_query where .query * is equal to DRM_XE_DEVICE_QUERY_GT_TOPOLOGY, then the reply uses * struct drm_xe_query_topology_mask in .data. * * The @type can be: * - %DRM_XE_TOPO_DSS_GEOMETRY - To query the mask of Dual Sub Slices * (DSS) available for geometry operations. For example a query response * containing the following in mask: * ``DSS_GEOMETRY ff ff ff ff 00 00 00 00`` * means 32 DSS are available for geometry. * - %DRM_XE_TOPO_DSS_COMPUTE - To query the mask of Dual Sub Slices * (DSS) available for compute operations. For example a query response * containing the following in mask: * ``DSS_COMPUTE ff ff ff ff 00 00 00 00`` * means 32 DSS are available for compute. * - %DRM_XE_TOPO_EU_PER_DSS - To query the mask of Execution Units (EU) * available per Dual Sub Slices (DSS). For example a query response * containing the following in mask: * ``EU_PER_DSS ff ff 00 00 00 00 00 00`` * means each DSS has 16 EU. */ struct drm_xe_query_topology_mask { /** @gt_id: GT ID the mask is associated with */ __u16 gt_id; #define DRM_XE_TOPO_DSS_GEOMETRY (1 << 0) #define DRM_XE_TOPO_DSS_COMPUTE (1 << 1) #define DRM_XE_TOPO_EU_PER_DSS (1 << 2) /** @type: type of mask */ __u16 type; /** @num_bytes: number of bytes in requested mask */ __u32 num_bytes; /** @mask: little-endian mask of @num_bytes */ __u8 mask[]; }; /** * struct drm_xe_query_engine_cycles - correlate CPU and GPU timestamps * * If a query is made with a struct drm_xe_device_query where .query is equal to * DRM_XE_DEVICE_QUERY_ENGINE_CYCLES, then the reply uses struct drm_xe_query_engine_cycles * in .data. struct drm_xe_query_engine_cycles is allocated by the user and * .data points to this allocated structure. * * The query returns the engine cycles, which along with GT's @reference_clock, * can be used to calculate the engine timestamp. In addition the * query returns a set of cpu timestamps that indicate when the command * streamer cycle count was captured. */ struct drm_xe_query_engine_cycles { /** * @eci: This is input by the user and is the engine for which command * streamer cycles is queried. */ struct drm_xe_engine_class_instance eci; /** * @clockid: This is input by the user and is the reference clock id for * CPU timestamp. For definition, see clock_gettime(2) and * perf_event_open(2). Supported clock ids are CLOCK_MONOTONIC, * CLOCK_MONOTONIC_RAW, CLOCK_REALTIME, CLOCK_BOOTTIME, CLOCK_TAI. */ __s32 clockid; /** @width: Width of the engine cycle counter in bits. */ __u32 width; /** * @engine_cycles: Engine cycles as read from its register * at 0x358 offset. */ __u64 engine_cycles; /** * @cpu_timestamp: CPU timestamp in ns. The timestamp is captured before * reading the engine_cycles register using the reference clockid set by the * user. */ __u64 cpu_timestamp; /** * @cpu_delta: Time delta in ns captured around reading the lower dword * of the engine_cycles register. */ __u64 cpu_delta; }; /** * struct drm_xe_query_uc_fw_version - query a micro-controller firmware version * * Given a uc_type this will return the branch, major, minor and patch version * of the micro-controller firmware. */ struct drm_xe_query_uc_fw_version { /** @uc_type: The micro-controller type to query firmware version */ #define XE_QUERY_UC_TYPE_GUC_SUBMISSION 0 __u16 uc_type; /** @pad: MBZ */ __u16 pad; /** @branch_ver: branch uc fw version */ __u32 branch_ver; /** @major_ver: major uc fw version */ __u32 major_ver; /** @minor_ver: minor uc fw version */ __u32 minor_ver; /** @patch_ver: patch uc fw version */ __u32 patch_ver; /** @pad2: MBZ */ __u32 pad2; /** @reserved: Reserved */ __u64 reserved; }; /** * struct drm_xe_device_query - Input of &DRM_IOCTL_XE_DEVICE_QUERY - main * structure to query device information * * The user selects the type of data to query among DRM_XE_DEVICE_QUERY_* * and sets the value in the query member. This determines the type of * the structure provided by the driver in data, among struct drm_xe_query_*. * * The @query can be: * - %DRM_XE_DEVICE_QUERY_ENGINES * - %DRM_XE_DEVICE_QUERY_MEM_REGIONS * - %DRM_XE_DEVICE_QUERY_CONFIG * - %DRM_XE_DEVICE_QUERY_GT_LIST * - %DRM_XE_DEVICE_QUERY_HWCONFIG - Query type to retrieve the hardware * configuration of the device such as information on slices, memory, * caches, and so on. It is provided as a table of key / value * attributes. * - %DRM_XE_DEVICE_QUERY_GT_TOPOLOGY * - %DRM_XE_DEVICE_QUERY_ENGINE_CYCLES * * If size is set to 0, the driver fills it with the required size for * the requested type of data to query. If size is equal to the required * size, the queried information is copied into data. If size is set to * a value different from 0 and different from the required size, the * IOCTL call returns -EINVAL. * * For example the following code snippet allows retrieving and printing * information about the device engines with DRM_XE_DEVICE_QUERY_ENGINES: * * .. code-block:: C * * struct drm_xe_query_engines *engines; * struct drm_xe_device_query query = { * .extensions = 0, * .query = DRM_XE_DEVICE_QUERY_ENGINES, * .size = 0, * .data = 0, * }; * ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query); * engines = malloc(query.size); * query.data = (uintptr_t)engines; * ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query); * for (int i = 0; i < engines->num_engines; i++) { * printf("Engine %d: %s\n", i, * engines->engines[i].instance.engine_class == * DRM_XE_ENGINE_CLASS_RENDER ? "RENDER": * engines->engines[i].instance.engine_class == * DRM_XE_ENGINE_CLASS_COPY ? "COPY": * engines->engines[i].instance.engine_class == * DRM_XE_ENGINE_CLASS_VIDEO_DECODE ? "VIDEO_DECODE": * engines->engines[i].instance.engine_class == * DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE ? "VIDEO_ENHANCE": * engines->engines[i].instance.engine_class == * DRM_XE_ENGINE_CLASS_COMPUTE ? "COMPUTE": * "UNKNOWN"); * } * free(engines); */ struct drm_xe_device_query { /** @extensions: Pointer to the first extension struct, if any */ __u64 extensions; #define DRM_XE_DEVICE_QUERY_ENGINES 0 #define DRM_XE_DEVICE_QUERY_MEM_REGIONS 1 #define DRM_XE_DEVICE_QUERY_CONFIG 2 #define DRM_XE_DEVICE_QUERY_GT_LIST 3 #define DRM_XE_DEVICE_QUERY_HWCONFIG 4 #define DRM_XE_DEVICE_QUERY_GT_TOPOLOGY 5 #define DRM_XE_DEVICE_QUERY_ENGINE_CYCLES 6 #define DRM_XE_DEVICE_QUERY_UC_FW_VERSION 7 /** @query: The type of data to query */ __u32 query; /** @size: Size of the queried data */ __u32 size; /** @data: Queried data is placed here */ __u64 data; /** @reserved: Reserved */ __u64 reserved[2]; }; /** * struct drm_xe_gem_create - Input of &DRM_IOCTL_XE_GEM_CREATE - A structure for * gem creation * * The @flags can be: * - %DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING * - %DRM_XE_GEM_CREATE_FLAG_SCANOUT * - %DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM - When using VRAM as a * possible placement, ensure that the corresponding VRAM allocation * will always use the CPU accessible part of VRAM. This is important * for small-bar systems (on full-bar systems this gets turned into a * noop). * Note1: System memory can be used as an extra placement if the kernel * should spill the allocation to system memory, if space can't be made * available in the CPU accessible part of VRAM (giving the same * behaviour as the i915 interface, see * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS). * Note2: For clear-color CCS surfaces the kernel needs to read the * clear-color value stored in the buffer, and on discrete platforms we * need to use VRAM for display surfaces, therefore the kernel requires * setting this flag for such objects, otherwise an error is thrown on * small-bar systems. * * @cpu_caching supports the following values: * - %DRM_XE_GEM_CPU_CACHING_WB - Allocate the pages with write-back * caching. On iGPU this can't be used for scanout surfaces. Currently * not allowed for objects placed in VRAM. * - %DRM_XE_GEM_CPU_CACHING_WC - Allocate the pages as write-combined. This * is uncached. Scanout surfaces should likely use this. All objects * that can be placed in VRAM must use this. */ struct drm_xe_gem_create { /** @extensions: Pointer to the first extension struct, if any */ __u64 extensions; /** * @size: Size of the object to be created, must match region * (system or vram) minimum alignment (&min_page_size). */ __u64 size; /** * @placement: A mask of memory instances of where BO can be placed. * Each index in this mask refers directly to the struct * drm_xe_query_mem_regions' instance, no assumptions should * be made about order. The type of each region is described * by struct drm_xe_query_mem_regions' mem_class. */ __u32 placement; #define DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING (1 << 0) #define DRM_XE_GEM_CREATE_FLAG_SCANOUT (1 << 1) #define DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM (1 << 2) /** * @flags: Flags, currently a mask of memory instances of where BO can * be placed */ __u32 flags; /** * @vm_id: Attached VM, if any * * If a VM is specified, this BO must: * * 1. Only ever be bound to that VM. * 2. Cannot be exported as a PRIME fd. */ __u32 vm_id; /** * @handle: Returned handle for the object. * * Object handles are nonzero. */ __u32 handle; #define DRM_XE_GEM_CPU_CACHING_WB 1 #define DRM_XE_GEM_CPU_CACHING_WC 2 /** * @cpu_caching: The CPU caching mode to select for this object. If * mmaping the object the mode selected here will also be used. */ __u16 cpu_caching; /** @pad: MBZ */ __u16 pad[3]; /** @reserved: Reserved */ __u64 reserved[2]; }; /** * struct drm_xe_gem_mmap_offset - Input of &DRM_IOCTL_XE_GEM_MMAP_OFFSET */ struct drm_xe_gem_mmap_offset { /** @extensions: Pointer to the first extension struct, if any */ __u64 extensions; /** @handle: Handle for the object being mapped. */ __u32 handle; /** @flags: Must be zero */ __u32 flags; /** @offset: The fake offset to use for subsequent mmap call */ __u64 offset; /** @reserved: Reserved */ __u64 reserved[2]; }; /** * struct drm_xe_vm_create - Input of &DRM_IOCTL_XE_VM_CREATE * * The @flags can be: * - %DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE * - %DRM_XE_VM_CREATE_FLAG_LR_MODE - An LR, or Long Running VM accepts * exec submissions to its exec_queues that don't have an upper time * limit on the job execution time. But exec submissions to these * don't allow any of the flags DRM_XE_SYNC_FLAG_SYNCOBJ, * DRM_XE_SYNC_FLAG_TIMELINE_SYNCOBJ, DRM_XE_SYNC_FLAG_DMA_BUF, * used as out-syncobjs, that is, together with DRM_XE_SYNC_FLAG_SIGNAL. * LR VMs can be created in recoverable page-fault mode using * DRM_XE_VM_CREATE_FLAG_FAULT_MODE, if the device supports it. * If that flag is omitted, the UMD can not rely on the slightly * different per-VM overcommit semantics that are enabled by * DRM_XE_VM_CREATE_FLAG_FAULT_MODE (see below), but KMD may * still enable recoverable pagefaults if supported by the device. * - %DRM_XE_VM_CREATE_FLAG_FAULT_MODE - Requires also * DRM_XE_VM_CREATE_FLAG_LR_MODE. It allows memory to be allocated on * demand when accessed, and also allows per-VM overcommit of memory. * The xe driver internally uses recoverable pagefaults to implement * this. */ struct drm_xe_vm_create { /** @extensions: Pointer to the first extension struct, if any */ __u64 extensions; #define DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE (1 << 0) #define DRM_XE_VM_CREATE_FLAG_LR_MODE (1 << 1) #define DRM_XE_VM_CREATE_FLAG_FAULT_MODE (1 << 2) /** @flags: Flags */ __u32 flags; /** @vm_id: Returned VM ID */ __u32 vm_id; /** @reserved: Reserved */ __u64 reserved[2]; }; /** * struct drm_xe_vm_destroy - Input of &DRM_IOCTL_XE_VM_DESTROY */ struct drm_xe_vm_destroy { /** @vm_id: VM ID */ __u32 vm_id; /** @pad: MBZ */ __u32 pad; /** @reserved: Reserved */ __u64 reserved[2]; }; /** * struct drm_xe_vm_bind_op - run bind operations * * The @op can be: * - %DRM_XE_VM_BIND_OP_MAP * - %DRM_XE_VM_BIND_OP_UNMAP * - %DRM_XE_VM_BIND_OP_MAP_USERPTR * - %DRM_XE_VM_BIND_OP_UNMAP_ALL * - %DRM_XE_VM_BIND_OP_PREFETCH * * and the @flags can be: * - %DRM_XE_VM_BIND_FLAG_NULL - When the NULL flag is set, the page * tables are setup with a special bit which indicates writes are * dropped and all reads return zero. In the future, the NULL flags * will only be valid for DRM_XE_VM_BIND_OP_MAP operations, the BO * handle MBZ, and the BO offset MBZ. This flag is intended to * implement VK sparse bindings. */ struct drm_xe_vm_bind_op { /** @extensions: Pointer to the first extension struct, if any */ __u64 extensions; /** * @obj: GEM object to operate on, MBZ for MAP_USERPTR, MBZ for UNMAP */ __u32 obj; /** * @pat_index: The platform defined @pat_index to use for this mapping. * The index basically maps to some predefined memory attributes, * including things like caching, coherency, compression etc. The exact * meaning of the pat_index is platform specific and defined in the * Bspec and PRMs. When the KMD sets up the binding the index here is * encoded into the ppGTT PTE. * * For coherency the @pat_index needs to be at least 1way coherent when * drm_xe_gem_create.cpu_caching is DRM_XE_GEM_CPU_CACHING_WB. The KMD * will extract the coherency mode from the @pat_index and reject if * there is a mismatch (see note below for pre-MTL platforms). * * Note: On pre-MTL platforms there is only a caching mode and no * explicit coherency mode, but on such hardware there is always a * shared-LLC (or is dgpu) so all GT memory accesses are coherent with * CPU caches even with the caching mode set as uncached. It's only the * display engine that is incoherent (on dgpu it must be in VRAM which * is always mapped as WC on the CPU). However to keep the uapi somewhat * consistent with newer platforms the KMD groups the different cache * levels into the following coherency buckets on all pre-MTL platforms: * * ppGTT UC -> COH_NONE * ppGTT WC -> COH_NONE * ppGTT WT -> COH_NONE * ppGTT WB -> COH_AT_LEAST_1WAY * * In practice UC/WC/WT should only ever used for scanout surfaces on * such platforms (or perhaps in general for dma-buf if shared with * another device) since it is only the display engine that is actually * incoherent. Everything else should typically use WB given that we * have a shared-LLC. On MTL+ this completely changes and the HW * defines the coherency mode as part of the @pat_index, where * incoherent GT access is possible. * * Note: For userptr and externally imported dma-buf the kernel expects * either 1WAY or 2WAY for the @pat_index. * * For DRM_XE_VM_BIND_FLAG_NULL bindings there are no KMD restrictions * on the @pat_index. For such mappings there is no actual memory being * mapped (the address in the PTE is invalid), so the various PAT memory * attributes likely do not apply. Simply leaving as zero is one * option (still a valid pat_index). */ __u16 pat_index; /** @pad: MBZ */ __u16 pad; union { /** * @obj_offset: Offset into the object, MBZ for CLEAR_RANGE, * ignored for unbind */ __u64 obj_offset; /** @userptr: user pointer to bind on */ __u64 userptr; }; /** * @range: Number of bytes from the object to bind to addr, MBZ for UNMAP_ALL */ __u64 range; /** @addr: Address to operate on, MBZ for UNMAP_ALL */ __u64 addr; #define DRM_XE_VM_BIND_OP_MAP 0x0 #define DRM_XE_VM_BIND_OP_UNMAP 0x1 #define DRM_XE_VM_BIND_OP_MAP_USERPTR 0x2 #define DRM_XE_VM_BIND_OP_UNMAP_ALL 0x3 #define DRM_XE_VM_BIND_OP_PREFETCH 0x4 /** @op: Bind operation to perform */ __u32 op; #define DRM_XE_VM_BIND_FLAG_NULL (1 << 2) #define DRM_XE_VM_BIND_FLAG_DUMPABLE (1 << 3) /** @flags: Bind flags */ __u32 flags; /** * @prefetch_mem_region_instance: Memory region to prefetch VMA to. * It is a region instance, not a mask. * To be used only with %DRM_XE_VM_BIND_OP_PREFETCH operation. */ __u32 prefetch_mem_region_instance; /** @pad2: MBZ */ __u32 pad2; /** @reserved: Reserved */ __u64 reserved[3]; }; /** * struct drm_xe_vm_bind - Input of &DRM_IOCTL_XE_VM_BIND * * Below is an example of a minimal use of @drm_xe_vm_bind to * asynchronously bind the buffer `data` at address `BIND_ADDRESS` to * illustrate `userptr`. It can be synchronized by using the example * provided for @drm_xe_sync. * * .. code-block:: C * * data = aligned_alloc(ALIGNMENT, BO_SIZE); * struct drm_xe_vm_bind bind = { * .vm_id = vm, * .num_binds = 1, * .bind.obj = 0, * .bind.obj_offset = to_user_pointer(data), * .bind.range = BO_SIZE, * .bind.addr = BIND_ADDRESS, * .bind.op = DRM_XE_VM_BIND_OP_MAP_USERPTR, * .bind.flags = 0, * .num_syncs = 1, * .syncs = &sync, * .exec_queue_id = 0, * }; * ioctl(fd, DRM_IOCTL_XE_VM_BIND, &bind); * */ struct drm_xe_vm_bind { /** @extensions: Pointer to the first extension struct, if any */ __u64 extensions; /** @vm_id: The ID of the VM to bind to */ __u32 vm_id; /** * @exec_queue_id: exec_queue_id, must be of class DRM_XE_ENGINE_CLASS_VM_BIND * and exec queue must have same vm_id. If zero, the default VM bind engine * is used. */ __u32 exec_queue_id; /** @pad: MBZ */ __u32 pad; /** @num_binds: number of binds in this IOCTL */ __u32 num_binds; union { /** @bind: used if num_binds == 1 */ struct drm_xe_vm_bind_op bind; /** * @vector_of_binds: userptr to array of struct * drm_xe_vm_bind_op if num_binds > 1 */ __u64 vector_of_binds; }; /** @pad2: MBZ */ __u32 pad2; /** @num_syncs: amount of syncs to wait on */ __u32 num_syncs; /** @syncs: pointer to struct drm_xe_sync array */ __u64 syncs; /** @reserved: Reserved */ __u64 reserved[2]; }; /** * struct drm_xe_exec_queue_create - Input of &DRM_IOCTL_XE_EXEC_QUEUE_CREATE * * The example below shows how to use @drm_xe_exec_queue_create to create * a simple exec_queue (no parallel submission) of class * &DRM_XE_ENGINE_CLASS_RENDER. * * .. code-block:: C * * struct drm_xe_engine_class_instance instance = { * .engine_class = DRM_XE_ENGINE_CLASS_RENDER, * }; * struct drm_xe_exec_queue_create exec_queue_create = { * .extensions = 0, * .vm_id = vm, * .num_bb_per_exec = 1, * .num_eng_per_bb = 1, * .instances = to_user_pointer(&instance), * }; * ioctl(fd, DRM_IOCTL_XE_EXEC_QUEUE_CREATE, &exec_queue_create); * */ struct drm_xe_exec_queue_create { #define DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY 0 #define DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY 0 #define DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE 1 /** @extensions: Pointer to the first extension struct, if any */ __u64 extensions; /** @width: submission width (number BB per exec) for this exec queue */ __u16 width; /** @num_placements: number of valid placements for this exec queue */ __u16 num_placements; /** @vm_id: VM to use for this exec queue */ __u32 vm_id; /** @flags: MBZ */ __u32 flags; /** @exec_queue_id: Returned exec queue ID */ __u32 exec_queue_id; /** * @instances: user pointer to a 2-d array of struct * drm_xe_engine_class_instance * * length = width (i) * num_placements (j) * index = j + i * width */ __u64 instances; /** @reserved: Reserved */ __u64 reserved[2]; }; /** * struct drm_xe_exec_queue_destroy - Input of &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY */ struct drm_xe_exec_queue_destroy { /** @exec_queue_id: Exec queue ID */ __u32 exec_queue_id; /** @pad: MBZ */ __u32 pad; /** @reserved: Reserved */ __u64 reserved[2]; }; /** * struct drm_xe_exec_queue_get_property - Input of &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY * * The @property can be: * - %DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN */ struct drm_xe_exec_queue_get_property { /** @extensions: Pointer to the first extension struct, if any */ __u64 extensions; /** @exec_queue_id: Exec queue ID */ __u32 exec_queue_id; #define DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN 0 /** @property: property to get */ __u32 property; /** @value: property value */ __u64 value; /** @reserved: Reserved */ __u64 reserved[2]; }; /** * struct drm_xe_sync - sync object * * The @type can be: * - %DRM_XE_SYNC_TYPE_SYNCOBJ * - %DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ * - %DRM_XE_SYNC_TYPE_USER_FENCE * * and the @flags can be: * - %DRM_XE_SYNC_FLAG_SIGNAL * * A minimal use of @drm_xe_sync looks like this: * * .. code-block:: C * * struct drm_xe_sync sync = { * .flags = DRM_XE_SYNC_FLAG_SIGNAL, * .type = DRM_XE_SYNC_TYPE_SYNCOBJ, * }; * struct drm_syncobj_create syncobj_create = { 0 }; * ioctl(fd, DRM_IOCTL_SYNCOBJ_CREATE, &syncobj_create); * sync.handle = syncobj_create.handle; * ... * use of &sync in drm_xe_exec or drm_xe_vm_bind * ... * struct drm_syncobj_wait wait = { * .handles = &sync.handle, * .timeout_nsec = INT64_MAX, * .count_handles = 1, * .flags = 0, * .first_signaled = 0, * .pad = 0, * }; * ioctl(fd, DRM_IOCTL_SYNCOBJ_WAIT, &wait); */ struct drm_xe_sync { /** @extensions: Pointer to the first extension struct, if any */ __u64 extensions; #define DRM_XE_SYNC_TYPE_SYNCOBJ 0x0 #define DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ 0x1 #define DRM_XE_SYNC_TYPE_USER_FENCE 0x2 /** @type: Type of the this sync object */ __u32 type; #define DRM_XE_SYNC_FLAG_SIGNAL (1 << 0) /** @flags: Sync Flags */ __u32 flags; union { /** @handle: Handle for the object */ __u32 handle; /** * @addr: Address of user fence. When sync is passed in via exec * IOCTL this is a GPU address in the VM. When sync passed in via * VM bind IOCTL this is a user pointer. In either case, it is * the users responsibility that this address is present and * mapped when the user fence is signalled. Must be qword * aligned. */ __u64 addr; }; /** * @timeline_value: Input for the timeline sync object. Needs to be * different than 0 when used with %DRM_XE_SYNC_FLAG_TIMELINE_SYNCOBJ. */ __u64 timeline_value; /** @reserved: Reserved */ __u64 reserved[2]; }; /** * struct drm_xe_exec - Input of &DRM_IOCTL_XE_EXEC * * This is an example to use @drm_xe_exec for execution of the object * at BIND_ADDRESS (see example in @drm_xe_vm_bind) by an exec_queue * (see example in @drm_xe_exec_queue_create). It can be synchronized * by using the example provided for @drm_xe_sync. * * .. code-block:: C * * struct drm_xe_exec exec = { * .exec_queue_id = exec_queue, * .syncs = &sync, * .num_syncs = 1, * .address = BIND_ADDRESS, * .num_batch_buffer = 1, * }; * ioctl(fd, DRM_IOCTL_XE_EXEC, &exec); * */ struct drm_xe_exec { /** @extensions: Pointer to the first extension struct, if any */ __u64 extensions; /** @exec_queue_id: Exec queue ID for the batch buffer */ __u32 exec_queue_id; /** @num_syncs: Amount of struct drm_xe_sync in array. */ __u32 num_syncs; /** @syncs: Pointer to struct drm_xe_sync array. */ __u64 syncs; /** * @address: address of batch buffer if num_batch_buffer == 1 or an * array of batch buffer addresses */ __u64 address; /** * @num_batch_buffer: number of batch buffer in this exec, must match * the width of the engine */ __u16 num_batch_buffer; /** @pad: MBZ */ __u16 pad[3]; /** @reserved: Reserved */ __u64 reserved[2]; }; /** * struct drm_xe_wait_user_fence - Input of &DRM_IOCTL_XE_WAIT_USER_FENCE * * Wait on user fence, XE will wake-up on every HW engine interrupt in the * instances list and check if user fence is complete:: * * (*addr & MASK) OP (VALUE & MASK) * * Returns to user on user fence completion or timeout. * * The @op can be: * - %DRM_XE_UFENCE_WAIT_OP_EQ * - %DRM_XE_UFENCE_WAIT_OP_NEQ * - %DRM_XE_UFENCE_WAIT_OP_GT * - %DRM_XE_UFENCE_WAIT_OP_GTE * - %DRM_XE_UFENCE_WAIT_OP_LT * - %DRM_XE_UFENCE_WAIT_OP_LTE * * and the @flags can be: * - %DRM_XE_UFENCE_WAIT_FLAG_ABSTIME * - %DRM_XE_UFENCE_WAIT_FLAG_SOFT_OP * * The @mask values can be for example: * - 0xffu for u8 * - 0xffffu for u16 * - 0xffffffffu for u32 * - 0xffffffffffffffffu for u64 */ struct drm_xe_wait_user_fence { /** @extensions: Pointer to the first extension struct, if any */ __u64 extensions; /** * @addr: user pointer address to wait on, must qword aligned */ __u64 addr; #define DRM_XE_UFENCE_WAIT_OP_EQ 0x0 #define DRM_XE_UFENCE_WAIT_OP_NEQ 0x1 #define DRM_XE_UFENCE_WAIT_OP_GT 0x2 #define DRM_XE_UFENCE_WAIT_OP_GTE 0x3 #define DRM_XE_UFENCE_WAIT_OP_LT 0x4 #define DRM_XE_UFENCE_WAIT_OP_LTE 0x5 /** @op: wait operation (type of comparison) */ __u16 op; #define DRM_XE_UFENCE_WAIT_FLAG_ABSTIME (1 << 0) /** @flags: wait flags */ __u16 flags; /** @pad: MBZ */ __u32 pad; /** @value: compare value */ __u64 value; /** @mask: comparison mask */ __u64 mask; /** * @timeout: how long to wait before bailing, value in nanoseconds. * Without DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flag set (relative timeout) * it contains timeout expressed in nanoseconds to wait (fence will * expire at now() + timeout). * When DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flat is set (absolute timeout) wait * will end at timeout (uses system MONOTONIC_CLOCK). * Passing negative timeout leads to neverending wait. * * On relative timeout this value is updated with timeout left * (for restarting the call in case of signal delivery). * On absolute timeout this value stays intact (restarted call still * expire at the same point of time). */ __s64 timeout; /** @exec_queue_id: exec_queue_id returned from xe_exec_queue_create_ioctl */ __u32 exec_queue_id; /** @pad2: MBZ */ __u32 pad2; /** @reserved: Reserved */ __u64 reserved[2]; }; #if defined(__cplusplus) } #endif #endif /* _XE_DRM_H_ */