Server IP : 192.168.23.10 / Your IP : 3.145.40.120 Web Server : Apache System : Linux echo.premieradvertising.com 5.14.0-362.8.1.el9_3.x86_64 #1 SMP PREEMPT_DYNAMIC Tue Nov 7 14:54:22 EST 2023 x86_64 User : rrrallyteam ( 1049) PHP Version : 8.1.31 Disable Function : exec,passthru,shell_exec,system MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : OFF Directory (0755) : /sbin/../share/awk/../augeas/../ruby/ |
[ Home ] | [ C0mmand ] | [ Upload File ] |
---|
# frozen_string_literal: false # # = prime.rb # # Prime numbers and factorization library. # # Copyright:: # Copyright (c) 1998-2008 Keiju ISHITSUKA(SHL Japan Inc.) # Copyright (c) 2008 Yuki Sonoda (Yugui) <yugui@yugui.jp> # # Documentation:: # Yuki Sonoda # require "singleton" require "forwardable" class Integer # Re-composes a prime factorization and returns the product. # # See Prime#int_from_prime_division for more details. def Integer.from_prime_division(pd) Prime.int_from_prime_division(pd) end # Returns the factorization of +self+. # # See Prime#prime_division for more details. def prime_division(generator = Prime::Generator23.new) Prime.prime_division(self, generator) end # Returns true if +self+ is a prime number, else returns false. # Not recommended for very big integers (> 10**23). def prime? return self >= 2 if self <= 3 if (bases = miller_rabin_bases) return miller_rabin_test(bases) end return true if self == 5 return false unless 30.gcd(self) == 1 (7..Integer.sqrt(self)).step(30) do |p| return false if self%(p) == 0 || self%(p+4) == 0 || self%(p+6) == 0 || self%(p+10) == 0 || self%(p+12) == 0 || self%(p+16) == 0 || self%(p+22) == 0 || self%(p+24) == 0 end true end MILLER_RABIN_BASES = [ [2], [2,3], [31,73], [2,3,5], [2,3,5,7], [2,7,61], [2,13,23,1662803], [2,3,5,7,11], [2,3,5,7,11,13], [2,3,5,7,11,13,17], [2,3,5,7,11,13,17,19,23], [2,3,5,7,11,13,17,19,23,29,31,37], [2,3,5,7,11,13,17,19,23,29,31,37,41], ].map!(&:freeze).freeze private_constant :MILLER_RABIN_BASES private def miller_rabin_bases # Miller-Rabin's complexity is O(k log^3n). # So we can reduce the complexity by reducing the number of bases tested. # Using values from https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test i = case when self < 0xffff then # For small integers, Miller Rabin can be slower # There is no mathematical significance to 0xffff return nil # when self < 2_047 then 0 when self < 1_373_653 then 1 when self < 9_080_191 then 2 when self < 25_326_001 then 3 when self < 3_215_031_751 then 4 when self < 4_759_123_141 then 5 when self < 1_122_004_669_633 then 6 when self < 2_152_302_898_747 then 7 when self < 3_474_749_660_383 then 8 when self < 341_550_071_728_321 then 9 when self < 3_825_123_056_546_413_051 then 10 when self < 318_665_857_834_031_151_167_461 then 11 when self < 3_317_044_064_679_887_385_961_981 then 12 else return nil end MILLER_RABIN_BASES[i] end private def miller_rabin_test(bases) return false if even? r = 0 d = self >> 1 while d.even? d >>= 1 r += 1 end self_minus_1 = self-1 bases.each do |a| x = a.pow(d, self) next if x == 1 || x == self_minus_1 || a == self return false if r.times do x = x.pow(2, self) break if x == self_minus_1 end end true end # Iterates the given block over all prime numbers. # # See +Prime+#each for more details. def Integer.each_prime(ubound, &block) # :yields: prime Prime.each(ubound, &block) end end # # The set of all prime numbers. # # == Example # # Prime.each(100) do |prime| # p prime #=> 2, 3, 5, 7, 11, ...., 97 # end # # Prime is Enumerable: # # Prime.first 5 # => [2, 3, 5, 7, 11] # # == Retrieving the instance # # For convenience, each instance method of +Prime+.instance can be accessed # as a class method of +Prime+. # # e.g. # Prime.instance.prime?(2) #=> true # Prime.prime?(2) #=> true # # == Generators # # A "generator" provides an implementation of enumerating pseudo-prime # numbers and it remembers the position of enumeration and upper bound. # Furthermore, it is an external iterator of prime enumeration which is # compatible with an Enumerator. # # +Prime+::+PseudoPrimeGenerator+ is the base class for generators. # There are few implementations of generator. # # [+Prime+::+EratosthenesGenerator+] # Uses Eratosthenes' sieve. # [+Prime+::+TrialDivisionGenerator+] # Uses the trial division method. # [+Prime+::+Generator23+] # Generates all positive integers which are not divisible by either 2 or 3. # This sequence is very bad as a pseudo-prime sequence. But this # is faster and uses much less memory than the other generators. So, # it is suitable for factorizing an integer which is not large but # has many prime factors. e.g. for Prime#prime? . class Prime VERSION = "0.1.2" include Enumerable include Singleton class << self extend Forwardable include Enumerable def method_added(method) # :nodoc: (class<< self;self;end).def_delegator :instance, method end end # Iterates the given block over all prime numbers. # # == Parameters # # +ubound+:: # Optional. An arbitrary positive number. # The upper bound of enumeration. The method enumerates # prime numbers infinitely if +ubound+ is nil. # +generator+:: # Optional. An implementation of pseudo-prime generator. # # == Return value # # An evaluated value of the given block at the last time. # Or an enumerator which is compatible to an +Enumerator+ # if no block given. # # == Description # # Calls +block+ once for each prime number, passing the prime as # a parameter. # # +ubound+:: # Upper bound of prime numbers. The iterator stops after it # yields all prime numbers p <= +ubound+. # def each(ubound = nil, generator = EratosthenesGenerator.new, &block) generator.upper_bound = ubound generator.each(&block) end # Returns true if +obj+ is an Integer and is prime. Also returns # true if +obj+ is a Module that is an ancestor of +Prime+. # Otherwise returns false. def include?(obj) case obj when Integer prime?(obj) when Module Module.instance_method(:include?).bind(Prime).call(obj) else false end end # Returns true if +value+ is a prime number, else returns false. # Integer#prime? is much more performant. # # == Parameters # # +value+:: an arbitrary integer to be checked. # +generator+:: optional. A pseudo-prime generator. def prime?(value, generator = Prime::Generator23.new) raise ArgumentError, "Expected a prime generator, got #{generator}" unless generator.respond_to? :each raise ArgumentError, "Expected an integer, got #{value}" unless value.respond_to?(:integer?) && value.integer? return false if value < 2 generator.each do |num| q,r = value.divmod num return true if q < num return false if r == 0 end end # Re-composes a prime factorization and returns the product. # # For the decomposition: # # [[p_1, e_1], [p_2, e_2], ..., [p_n, e_n]], # # it returns: # # p_1**e_1 * p_2**e_2 * ... * p_n**e_n. # # == Parameters # +pd+:: Array of pairs of integers. # Each pair consists of a prime number -- a prime factor -- # and a natural number -- its exponent (multiplicity). # # == Example # Prime.int_from_prime_division([[3, 2], [5, 1]]) #=> 45 # 3**2 * 5 #=> 45 # def int_from_prime_division(pd) pd.inject(1){|value, (prime, index)| value * prime**index } end # Returns the factorization of +value+. # # For an arbitrary integer: # # p_1**e_1 * p_2**e_2 * ... * p_n**e_n, # # prime_division returns an array of pairs of integers: # # [[p_1, e_1], [p_2, e_2], ..., [p_n, e_n]]. # # Each pair consists of a prime number -- a prime factor -- # and a natural number -- its exponent (multiplicity). # # == Parameters # +value+:: An arbitrary integer. # +generator+:: Optional. A pseudo-prime generator. # +generator+.succ must return the next # pseudo-prime number in ascending order. # It must generate all prime numbers, # but may also generate non-prime numbers, too. # # === Exceptions # +ZeroDivisionError+:: when +value+ is zero. # # == Example # # Prime.prime_division(45) #=> [[3, 2], [5, 1]] # 3**2 * 5 #=> 45 # def prime_division(value, generator = Prime::Generator23.new) raise ZeroDivisionError if value == 0 if value < 0 value = -value pv = [[-1, 1]] else pv = [] end generator.each do |prime| count = 0 while (value1, mod = value.divmod(prime) mod) == 0 value = value1 count += 1 end if count != 0 pv.push [prime, count] end break if value1 <= prime end if value > 1 pv.push [value, 1] end pv end # An abstract class for enumerating pseudo-prime numbers. # # Concrete subclasses should override succ, next, rewind. class PseudoPrimeGenerator include Enumerable def initialize(ubound = nil) @ubound = ubound end def upper_bound=(ubound) @ubound = ubound end def upper_bound @ubound end # returns the next pseudo-prime number, and move the internal # position forward. # # +PseudoPrimeGenerator+#succ raises +NotImplementedError+. def succ raise NotImplementedError, "need to define `succ'" end # alias of +succ+. def next raise NotImplementedError, "need to define `next'" end # Rewinds the internal position for enumeration. # # See +Enumerator+#rewind. def rewind raise NotImplementedError, "need to define `rewind'" end # Iterates the given block for each prime number. def each return self.dup unless block_given? if @ubound last_value = nil loop do prime = succ break last_value if prime > @ubound last_value = yield prime end else loop do yield succ end end end # see +Enumerator+#with_index. def with_index(offset = 0, &block) return enum_for(:with_index, offset) { Float::INFINITY } unless block return each_with_index(&block) if offset == 0 each do |prime| yield prime, offset offset += 1 end end # see +Enumerator+#with_object. def with_object(obj) return enum_for(:with_object, obj) { Float::INFINITY } unless block_given? each do |prime| yield prime, obj end end def size Float::INFINITY end end # An implementation of +PseudoPrimeGenerator+. # # Uses +EratosthenesSieve+. class EratosthenesGenerator < PseudoPrimeGenerator def initialize @last_prime_index = -1 super end def succ @last_prime_index += 1 EratosthenesSieve.instance.get_nth_prime(@last_prime_index) end def rewind initialize end alias next succ end # An implementation of +PseudoPrimeGenerator+ which uses # a prime table generated by trial division. class TrialDivisionGenerator < PseudoPrimeGenerator def initialize @index = -1 super end def succ TrialDivision.instance[@index += 1] end def rewind initialize end alias next succ end # Generates all integers which are greater than 2 and # are not divisible by either 2 or 3. # # This is a pseudo-prime generator, suitable on # checking primality of an integer by brute force # method. class Generator23 < PseudoPrimeGenerator def initialize @prime = 1 @step = nil super end def succ if (@step) @prime += @step @step = 6 - @step else case @prime when 1; @prime = 2 when 2; @prime = 3 when 3; @prime = 5; @step = 2 end end @prime end alias next succ def rewind initialize end end # Internal use. An implementation of prime table by trial division method. class TrialDivision include Singleton def initialize # :nodoc: # These are included as class variables to cache them for later uses. If memory # usage is a problem, they can be put in Prime#initialize as instance variables. # There must be no primes between @primes[-1] and @next_to_check. @primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101] # @next_to_check % 6 must be 1. @next_to_check = 103 # @primes[-1] - @primes[-1] % 6 + 7 @ulticheck_index = 3 # @primes.index(@primes.reverse.find {|n| # n < Math.sqrt(@@next_to_check) }) @ulticheck_next_squared = 121 # @primes[@ulticheck_index + 1] ** 2 end # Returns the +index+th prime number. # # +index+ is a 0-based index. def [](index) while index >= @primes.length # Only check for prime factors up to the square root of the potential primes, # but without the performance hit of an actual square root calculation. if @next_to_check + 4 > @ulticheck_next_squared @ulticheck_index += 1 @ulticheck_next_squared = @primes.at(@ulticheck_index + 1) ** 2 end # Only check numbers congruent to one and five, modulo six. All others # are divisible by two or three. This also allows us to skip checking against # two and three. @primes.push @next_to_check if @primes[2..@ulticheck_index].find {|prime| @next_to_check % prime == 0 }.nil? @next_to_check += 4 @primes.push @next_to_check if @primes[2..@ulticheck_index].find {|prime| @next_to_check % prime == 0 }.nil? @next_to_check += 2 end @primes[index] end end # Internal use. An implementation of Eratosthenes' sieve class EratosthenesSieve include Singleton def initialize @primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101] # @max_checked must be an even number @max_checked = @primes.last + 1 end def get_nth_prime(n) compute_primes while @primes.size <= n @primes[n] end private def compute_primes # max_segment_size must be an even number max_segment_size = 1e6.to_i max_cached_prime = @primes.last # do not double count primes if #compute_primes is interrupted # by Timeout.timeout @max_checked = max_cached_prime + 1 if max_cached_prime > @max_checked segment_min = @max_checked segment_max = [segment_min + max_segment_size, max_cached_prime * 2].min root = Integer.sqrt(segment_max) segment = ((segment_min + 1) .. segment_max).step(2).to_a (1..Float::INFINITY).each do |sieving| prime = @primes[sieving] break if prime > root composite_index = (-(segment_min + 1 + prime) / 2) % prime while composite_index < segment.size do segment[composite_index] = nil composite_index += prime end end @primes.concat(segment.compact!) @max_checked = segment_max end end end