Server IP : 192.168.23.10 / Your IP : 18.191.54.190 Web Server : Apache System : Linux echo.premieradvertising.com 5.14.0-362.8.1.el9_3.x86_64 #1 SMP PREEMPT_DYNAMIC Tue Nov 7 14:54:22 EST 2023 x86_64 User : rrrallyteam ( 1049) PHP Version : 8.1.31 Disable Function : exec,passthru,shell_exec,system MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : OFF Directory (0755) : /lib64/python3.9/ |
[ Home ] | [ C0mmand ] | [ Upload File ] |
---|
# Copyright 2007 Google Inc. # Licensed to PSF under a Contributor Agreement. """A fast, lightweight IPv4/IPv6 manipulation library in Python. This library is used to create/poke/manipulate IPv4 and IPv6 addresses and networks. """ __version__ = '1.0' import functools IPV4LENGTH = 32 IPV6LENGTH = 128 class AddressValueError(ValueError): """A Value Error related to the address.""" class NetmaskValueError(ValueError): """A Value Error related to the netmask.""" def ip_address(address): """Take an IP string/int and return an object of the correct type. Args: address: A string or integer, the IP address. Either IPv4 or IPv6 addresses may be supplied; integers less than 2**32 will be considered to be IPv4 by default. Returns: An IPv4Address or IPv6Address object. Raises: ValueError: if the *address* passed isn't either a v4 or a v6 address """ try: return IPv4Address(address) except (AddressValueError, NetmaskValueError): pass try: return IPv6Address(address) except (AddressValueError, NetmaskValueError): pass raise ValueError(f'{address!r} does not appear to be an IPv4 or IPv6 address') def ip_network(address, strict=True): """Take an IP string/int and return an object of the correct type. Args: address: A string or integer, the IP network. Either IPv4 or IPv6 networks may be supplied; integers less than 2**32 will be considered to be IPv4 by default. Returns: An IPv4Network or IPv6Network object. Raises: ValueError: if the string passed isn't either a v4 or a v6 address. Or if the network has host bits set. """ try: return IPv4Network(address, strict) except (AddressValueError, NetmaskValueError): pass try: return IPv6Network(address, strict) except (AddressValueError, NetmaskValueError): pass raise ValueError(f'{address!r} does not appear to be an IPv4 or IPv6 network') def ip_interface(address): """Take an IP string/int and return an object of the correct type. Args: address: A string or integer, the IP address. Either IPv4 or IPv6 addresses may be supplied; integers less than 2**32 will be considered to be IPv4 by default. Returns: An IPv4Interface or IPv6Interface object. Raises: ValueError: if the string passed isn't either a v4 or a v6 address. Notes: The IPv?Interface classes describe an Address on a particular Network, so they're basically a combination of both the Address and Network classes. """ try: return IPv4Interface(address) except (AddressValueError, NetmaskValueError): pass try: return IPv6Interface(address) except (AddressValueError, NetmaskValueError): pass raise ValueError(f'{address!r} does not appear to be an IPv4 or IPv6 interface') def v4_int_to_packed(address): """Represent an address as 4 packed bytes in network (big-endian) order. Args: address: An integer representation of an IPv4 IP address. Returns: The integer address packed as 4 bytes in network (big-endian) order. Raises: ValueError: If the integer is negative or too large to be an IPv4 IP address. """ try: return address.to_bytes(4, 'big') except OverflowError: raise ValueError("Address negative or too large for IPv4") def v6_int_to_packed(address): """Represent an address as 16 packed bytes in network (big-endian) order. Args: address: An integer representation of an IPv6 IP address. Returns: The integer address packed as 16 bytes in network (big-endian) order. """ try: return address.to_bytes(16, 'big') except OverflowError: raise ValueError("Address negative or too large for IPv6") def _split_optional_netmask(address): """Helper to split the netmask and raise AddressValueError if needed""" addr = str(address).split('/') if len(addr) > 2: raise AddressValueError(f"Only one '/' permitted in {address!r}") return addr def _find_address_range(addresses): """Find a sequence of sorted deduplicated IPv#Address. Args: addresses: a list of IPv#Address objects. Yields: A tuple containing the first and last IP addresses in the sequence. """ it = iter(addresses) first = last = next(it) for ip in it: if ip._ip != last._ip + 1: yield first, last first = ip last = ip yield first, last def _count_righthand_zero_bits(number, bits): """Count the number of zero bits on the right hand side. Args: number: an integer. bits: maximum number of bits to count. Returns: The number of zero bits on the right hand side of the number. """ if number == 0: return bits return min(bits, (~number & (number-1)).bit_length()) def summarize_address_range(first, last): """Summarize a network range given the first and last IP addresses. Example: >>> list(summarize_address_range(IPv4Address('192.0.2.0'), ... IPv4Address('192.0.2.130'))) ... #doctest: +NORMALIZE_WHITESPACE [IPv4Network('192.0.2.0/25'), IPv4Network('192.0.2.128/31'), IPv4Network('192.0.2.130/32')] Args: first: the first IPv4Address or IPv6Address in the range. last: the last IPv4Address or IPv6Address in the range. Returns: An iterator of the summarized IPv(4|6) network objects. Raise: TypeError: If the first and last objects are not IP addresses. If the first and last objects are not the same version. ValueError: If the last object is not greater than the first. If the version of the first address is not 4 or 6. """ if (not (isinstance(first, _BaseAddress) and isinstance(last, _BaseAddress))): raise TypeError('first and last must be IP addresses, not networks') if first.version != last.version: raise TypeError("%s and %s are not of the same version" % ( first, last)) if first > last: raise ValueError('last IP address must be greater than first') if first.version == 4: ip = IPv4Network elif first.version == 6: ip = IPv6Network else: raise ValueError('unknown IP version') ip_bits = first._max_prefixlen first_int = first._ip last_int = last._ip while first_int <= last_int: nbits = min(_count_righthand_zero_bits(first_int, ip_bits), (last_int - first_int + 1).bit_length() - 1) net = ip((first_int, ip_bits - nbits)) yield net first_int += 1 << nbits if first_int - 1 == ip._ALL_ONES: break def _collapse_addresses_internal(addresses): """Loops through the addresses, collapsing concurrent netblocks. Example: ip1 = IPv4Network('192.0.2.0/26') ip2 = IPv4Network('192.0.2.64/26') ip3 = IPv4Network('192.0.2.128/26') ip4 = IPv4Network('192.0.2.192/26') _collapse_addresses_internal([ip1, ip2, ip3, ip4]) -> [IPv4Network('192.0.2.0/24')] This shouldn't be called directly; it is called via collapse_addresses([]). Args: addresses: A list of IPv4Network's or IPv6Network's Returns: A list of IPv4Network's or IPv6Network's depending on what we were passed. """ # First merge to_merge = list(addresses) subnets = {} while to_merge: net = to_merge.pop() supernet = net.supernet() existing = subnets.get(supernet) if existing is None: subnets[supernet] = net elif existing != net: # Merge consecutive subnets del subnets[supernet] to_merge.append(supernet) # Then iterate over resulting networks, skipping subsumed subnets last = None for net in sorted(subnets.values()): if last is not None: # Since they are sorted, last.network_address <= net.network_address # is a given. if last.broadcast_address >= net.broadcast_address: continue yield net last = net def collapse_addresses(addresses): """Collapse a list of IP objects. Example: collapse_addresses([IPv4Network('192.0.2.0/25'), IPv4Network('192.0.2.128/25')]) -> [IPv4Network('192.0.2.0/24')] Args: addresses: An iterable of IPv4Network or IPv6Network objects. Returns: An iterator of the collapsed IPv(4|6)Network objects. Raises: TypeError: If passed a list of mixed version objects. """ addrs = [] ips = [] nets = [] # split IP addresses and networks for ip in addresses: if isinstance(ip, _BaseAddress): if ips and ips[-1]._version != ip._version: raise TypeError("%s and %s are not of the same version" % ( ip, ips[-1])) ips.append(ip) elif ip._prefixlen == ip._max_prefixlen: if ips and ips[-1]._version != ip._version: raise TypeError("%s and %s are not of the same version" % ( ip, ips[-1])) try: ips.append(ip.ip) except AttributeError: ips.append(ip.network_address) else: if nets and nets[-1]._version != ip._version: raise TypeError("%s and %s are not of the same version" % ( ip, nets[-1])) nets.append(ip) # sort and dedup ips = sorted(set(ips)) # find consecutive address ranges in the sorted sequence and summarize them if ips: for first, last in _find_address_range(ips): addrs.extend(summarize_address_range(first, last)) return _collapse_addresses_internal(addrs + nets) def get_mixed_type_key(obj): """Return a key suitable for sorting between networks and addresses. Address and Network objects are not sortable by default; they're fundamentally different so the expression IPv4Address('192.0.2.0') <= IPv4Network('192.0.2.0/24') doesn't make any sense. There are some times however, where you may wish to have ipaddress sort these for you anyway. If you need to do this, you can use this function as the key= argument to sorted(). Args: obj: either a Network or Address object. Returns: appropriate key. """ if isinstance(obj, _BaseNetwork): return obj._get_networks_key() elif isinstance(obj, _BaseAddress): return obj._get_address_key() return NotImplemented class _IPAddressBase: """The mother class.""" __slots__ = () @property def exploded(self): """Return the longhand version of the IP address as a string.""" return self._explode_shorthand_ip_string() @property def compressed(self): """Return the shorthand version of the IP address as a string.""" return str(self) @property def reverse_pointer(self): """The name of the reverse DNS pointer for the IP address, e.g.: >>> ipaddress.ip_address("127.0.0.1").reverse_pointer '1.0.0.127.in-addr.arpa' >>> ipaddress.ip_address("2001:db8::1").reverse_pointer '1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa' """ return self._reverse_pointer() @property def version(self): msg = '%200s has no version specified' % (type(self),) raise NotImplementedError(msg) def _check_int_address(self, address): if address < 0: msg = "%d (< 0) is not permitted as an IPv%d address" raise AddressValueError(msg % (address, self._version)) if address > self._ALL_ONES: msg = "%d (>= 2**%d) is not permitted as an IPv%d address" raise AddressValueError(msg % (address, self._max_prefixlen, self._version)) def _check_packed_address(self, address, expected_len): address_len = len(address) if address_len != expected_len: msg = "%r (len %d != %d) is not permitted as an IPv%d address" raise AddressValueError(msg % (address, address_len, expected_len, self._version)) @classmethod def _ip_int_from_prefix(cls, prefixlen): """Turn the prefix length into a bitwise netmask Args: prefixlen: An integer, the prefix length. Returns: An integer. """ return cls._ALL_ONES ^ (cls._ALL_ONES >> prefixlen) @classmethod def _prefix_from_ip_int(cls, ip_int): """Return prefix length from the bitwise netmask. Args: ip_int: An integer, the netmask in expanded bitwise format Returns: An integer, the prefix length. Raises: ValueError: If the input intermingles zeroes & ones """ trailing_zeroes = _count_righthand_zero_bits(ip_int, cls._max_prefixlen) prefixlen = cls._max_prefixlen - trailing_zeroes leading_ones = ip_int >> trailing_zeroes all_ones = (1 << prefixlen) - 1 if leading_ones != all_ones: byteslen = cls._max_prefixlen // 8 details = ip_int.to_bytes(byteslen, 'big') msg = 'Netmask pattern %r mixes zeroes & ones' raise ValueError(msg % details) return prefixlen @classmethod def _report_invalid_netmask(cls, netmask_str): msg = '%r is not a valid netmask' % netmask_str raise NetmaskValueError(msg) from None @classmethod def _prefix_from_prefix_string(cls, prefixlen_str): """Return prefix length from a numeric string Args: prefixlen_str: The string to be converted Returns: An integer, the prefix length. Raises: NetmaskValueError: If the input is not a valid netmask """ # int allows a leading +/- as well as surrounding whitespace, # so we ensure that isn't the case if not (prefixlen_str.isascii() and prefixlen_str.isdigit()): cls._report_invalid_netmask(prefixlen_str) try: prefixlen = int(prefixlen_str) except ValueError: cls._report_invalid_netmask(prefixlen_str) if not (0 <= prefixlen <= cls._max_prefixlen): cls._report_invalid_netmask(prefixlen_str) return prefixlen @classmethod def _prefix_from_ip_string(cls, ip_str): """Turn a netmask/hostmask string into a prefix length Args: ip_str: The netmask/hostmask to be converted Returns: An integer, the prefix length. Raises: NetmaskValueError: If the input is not a valid netmask/hostmask """ # Parse the netmask/hostmask like an IP address. try: ip_int = cls._ip_int_from_string(ip_str) except AddressValueError: cls._report_invalid_netmask(ip_str) # Try matching a netmask (this would be /1*0*/ as a bitwise regexp). # Note that the two ambiguous cases (all-ones and all-zeroes) are # treated as netmasks. try: return cls._prefix_from_ip_int(ip_int) except ValueError: pass # Invert the bits, and try matching a /0+1+/ hostmask instead. ip_int ^= cls._ALL_ONES try: return cls._prefix_from_ip_int(ip_int) except ValueError: cls._report_invalid_netmask(ip_str) @classmethod def _split_addr_prefix(cls, address): """Helper function to parse address of Network/Interface. Arg: address: Argument of Network/Interface. Returns: (addr, prefix) tuple. """ # a packed address or integer if isinstance(address, (bytes, int)): return address, cls._max_prefixlen if not isinstance(address, tuple): # Assume input argument to be string or any object representation # which converts into a formatted IP prefix string. address = _split_optional_netmask(address) # Constructing from a tuple (addr, [mask]) if len(address) > 1: return address return address[0], cls._max_prefixlen def __reduce__(self): return self.__class__, (str(self),) _address_fmt_re = None @functools.total_ordering class _BaseAddress(_IPAddressBase): """A generic IP object. This IP class contains the version independent methods which are used by single IP addresses. """ __slots__ = () def __int__(self): return self._ip def __eq__(self, other): try: return (self._ip == other._ip and self._version == other._version) except AttributeError: return NotImplemented def __lt__(self, other): if not isinstance(other, _BaseAddress): return NotImplemented if self._version != other._version: raise TypeError('%s and %s are not of the same version' % ( self, other)) if self._ip != other._ip: return self._ip < other._ip return False # Shorthand for Integer addition and subtraction. This is not # meant to ever support addition/subtraction of addresses. def __add__(self, other): if not isinstance(other, int): return NotImplemented return self.__class__(int(self) + other) def __sub__(self, other): if not isinstance(other, int): return NotImplemented return self.__class__(int(self) - other) def __repr__(self): return '%s(%r)' % (self.__class__.__name__, str(self)) def __str__(self): return str(self._string_from_ip_int(self._ip)) def __hash__(self): return hash(hex(int(self._ip))) def _get_address_key(self): return (self._version, self) def __reduce__(self): return self.__class__, (self._ip,) def __format__(self, fmt): """Returns an IP address as a formatted string. Supported presentation types are: 's': returns the IP address as a string (default) 'b': converts to binary and returns a zero-padded string 'X' or 'x': converts to upper- or lower-case hex and returns a zero-padded string 'n': the same as 'b' for IPv4 and 'x' for IPv6 For binary and hex presentation types, the alternate form specifier '#' and the grouping option '_' are supported. """ # Support string formatting if not fmt or fmt[-1] == 's': return format(str(self), fmt) # From here on down, support for 'bnXx' global _address_fmt_re if _address_fmt_re is None: import re _address_fmt_re = re.compile('(#?)(_?)([xbnX])') m = _address_fmt_re.fullmatch(fmt) if not m: return super().__format__(fmt) alternate, grouping, fmt_base = m.groups() # Set some defaults if fmt_base == 'n': if self._version == 4: fmt_base = 'b' # Binary is default for ipv4 else: fmt_base = 'x' # Hex is default for ipv6 if fmt_base == 'b': padlen = self._max_prefixlen else: padlen = self._max_prefixlen // 4 if grouping: padlen += padlen // 4 - 1 if alternate: padlen += 2 # 0b or 0x return format(int(self), f'{alternate}0{padlen}{grouping}{fmt_base}') @functools.total_ordering class _BaseNetwork(_IPAddressBase): """A generic IP network object. This IP class contains the version independent methods which are used by networks. """ def __repr__(self): return '%s(%r)' % (self.__class__.__name__, str(self)) def __str__(self): return '%s/%d' % (self.network_address, self.prefixlen) def hosts(self): """Generate Iterator over usable hosts in a network. This is like __iter__ except it doesn't return the network or broadcast addresses. """ network = int(self.network_address) broadcast = int(self.broadcast_address) for x in range(network + 1, broadcast): yield self._address_class(x) def __iter__(self): network = int(self.network_address) broadcast = int(self.broadcast_address) for x in range(network, broadcast + 1): yield self._address_class(x) def __getitem__(self, n): network = int(self.network_address) broadcast = int(self.broadcast_address) if n >= 0: if network + n > broadcast: raise IndexError('address out of range') return self._address_class(network + n) else: n += 1 if broadcast + n < network: raise IndexError('address out of range') return self._address_class(broadcast + n) def __lt__(self, other): if not isinstance(other, _BaseNetwork): return NotImplemented if self._version != other._version: raise TypeError('%s and %s are not of the same version' % ( self, other)) if self.network_address != other.network_address: return self.network_address < other.network_address if self.netmask != other.netmask: return self.netmask < other.netmask return False def __eq__(self, other): try: return (self._version == other._version and self.network_address == other.network_address and int(self.netmask) == int(other.netmask)) except AttributeError: return NotImplemented def __hash__(self): return hash(int(self.network_address) ^ int(self.netmask)) def __contains__(self, other): # always false if one is v4 and the other is v6. if self._version != other._version: return False # dealing with another network. if isinstance(other, _BaseNetwork): return False # dealing with another address else: # address return other._ip & self.netmask._ip == self.network_address._ip def overlaps(self, other): """Tell if self is partly contained in other.""" return self.network_address in other or ( self.broadcast_address in other or ( other.network_address in self or ( other.broadcast_address in self))) @functools.cached_property def broadcast_address(self): return self._address_class(int(self.network_address) | int(self.hostmask)) @functools.cached_property def hostmask(self): return self._address_class(int(self.netmask) ^ self._ALL_ONES) @property def with_prefixlen(self): return '%s/%d' % (self.network_address, self._prefixlen) @property def with_netmask(self): return '%s/%s' % (self.network_address, self.netmask) @property def with_hostmask(self): return '%s/%s' % (self.network_address, self.hostmask) @property def num_addresses(self): """Number of hosts in the current subnet.""" return int(self.broadcast_address) - int(self.network_address) + 1 @property def _address_class(self): # Returning bare address objects (rather than interfaces) allows for # more consistent behaviour across the network address, broadcast # address and individual host addresses. msg = '%200s has no associated address class' % (type(self),) raise NotImplementedError(msg) @property def prefixlen(self): return self._prefixlen def address_exclude(self, other): """Remove an address from a larger block. For example: addr1 = ip_network('192.0.2.0/28') addr2 = ip_network('192.0.2.1/32') list(addr1.address_exclude(addr2)) = [IPv4Network('192.0.2.0/32'), IPv4Network('192.0.2.2/31'), IPv4Network('192.0.2.4/30'), IPv4Network('192.0.2.8/29')] or IPv6: addr1 = ip_network('2001:db8::1/32') addr2 = ip_network('2001:db8::1/128') list(addr1.address_exclude(addr2)) = [ip_network('2001:db8::1/128'), ip_network('2001:db8::2/127'), ip_network('2001:db8::4/126'), ip_network('2001:db8::8/125'), ... ip_network('2001:db8:8000::/33')] Args: other: An IPv4Network or IPv6Network object of the same type. Returns: An iterator of the IPv(4|6)Network objects which is self minus other. Raises: TypeError: If self and other are of differing address versions, or if other is not a network object. ValueError: If other is not completely contained by self. """ if not self._version == other._version: raise TypeError("%s and %s are not of the same version" % ( self, other)) if not isinstance(other, _BaseNetwork): raise TypeError("%s is not a network object" % other) if not other.subnet_of(self): raise ValueError('%s not contained in %s' % (other, self)) if other == self: return # Make sure we're comparing the network of other. other = other.__class__('%s/%s' % (other.network_address, other.prefixlen)) s1, s2 = self.subnets() while s1 != other and s2 != other: if other.subnet_of(s1): yield s2 s1, s2 = s1.subnets() elif other.subnet_of(s2): yield s1 s1, s2 = s2.subnets() else: # If we got here, there's a bug somewhere. raise AssertionError('Error performing exclusion: ' 's1: %s s2: %s other: %s' % (s1, s2, other)) if s1 == other: yield s2 elif s2 == other: yield s1 else: # If we got here, there's a bug somewhere. raise AssertionError('Error performing exclusion: ' 's1: %s s2: %s other: %s' % (s1, s2, other)) def compare_networks(self, other): """Compare two IP objects. This is only concerned about the comparison of the integer representation of the network addresses. This means that the host bits aren't considered at all in this method. If you want to compare host bits, you can easily enough do a 'HostA._ip < HostB._ip' Args: other: An IP object. Returns: If the IP versions of self and other are the same, returns: -1 if self < other: eg: IPv4Network('192.0.2.0/25') < IPv4Network('192.0.2.128/25') IPv6Network('2001:db8::1000/124') < IPv6Network('2001:db8::2000/124') 0 if self == other eg: IPv4Network('192.0.2.0/24') == IPv4Network('192.0.2.0/24') IPv6Network('2001:db8::1000/124') == IPv6Network('2001:db8::1000/124') 1 if self > other eg: IPv4Network('192.0.2.128/25') > IPv4Network('192.0.2.0/25') IPv6Network('2001:db8::2000/124') > IPv6Network('2001:db8::1000/124') Raises: TypeError if the IP versions are different. """ # does this need to raise a ValueError? if self._version != other._version: raise TypeError('%s and %s are not of the same type' % ( self, other)) # self._version == other._version below here: if self.network_address < other.network_address: return -1 if self.network_address > other.network_address: return 1 # self.network_address == other.network_address below here: if self.netmask < other.netmask: return -1 if self.netmask > other.netmask: return 1 return 0 def _get_networks_key(self): """Network-only key function. Returns an object that identifies this address' network and netmask. This function is a suitable "key" argument for sorted() and list.sort(). """ return (self._version, self.network_address, self.netmask) def subnets(self, prefixlen_diff=1, new_prefix=None): """The subnets which join to make the current subnet. In the case that self contains only one IP (self._prefixlen == 32 for IPv4 or self._prefixlen == 128 for IPv6), yield an iterator with just ourself. Args: prefixlen_diff: An integer, the amount the prefix length should be increased by. This should not be set if new_prefix is also set. new_prefix: The desired new prefix length. This must be a larger number (smaller prefix) than the existing prefix. This should not be set if prefixlen_diff is also set. Returns: An iterator of IPv(4|6) objects. Raises: ValueError: The prefixlen_diff is too small or too large. OR prefixlen_diff and new_prefix are both set or new_prefix is a smaller number than the current prefix (smaller number means a larger network) """ if self._prefixlen == self._max_prefixlen: yield self return if new_prefix is not None: if new_prefix < self._prefixlen: raise ValueError('new prefix must be longer') if prefixlen_diff != 1: raise ValueError('cannot set prefixlen_diff and new_prefix') prefixlen_diff = new_prefix - self._prefixlen if prefixlen_diff < 0: raise ValueError('prefix length diff must be > 0') new_prefixlen = self._prefixlen + prefixlen_diff if new_prefixlen > self._max_prefixlen: raise ValueError( 'prefix length diff %d is invalid for netblock %s' % ( new_prefixlen, self)) start = int(self.network_address) end = int(self.broadcast_address) + 1 step = (int(self.hostmask) + 1) >> prefixlen_diff for new_addr in range(start, end, step): current = self.__class__((new_addr, new_prefixlen)) yield current def supernet(self, prefixlen_diff=1, new_prefix=None): """The supernet containing the current network. Args: prefixlen_diff: An integer, the amount the prefix length of the network should be decreased by. For example, given a /24 network and a prefixlen_diff of 3, a supernet with a /21 netmask is returned. Returns: An IPv4 network object. Raises: ValueError: If self.prefixlen - prefixlen_diff < 0. I.e., you have a negative prefix length. OR If prefixlen_diff and new_prefix are both set or new_prefix is a larger number than the current prefix (larger number means a smaller network) """ if self._prefixlen == 0: return self if new_prefix is not None: if new_prefix > self._prefixlen: raise ValueError('new prefix must be shorter') if prefixlen_diff != 1: raise ValueError('cannot set prefixlen_diff and new_prefix') prefixlen_diff = self._prefixlen - new_prefix new_prefixlen = self.prefixlen - prefixlen_diff if new_prefixlen < 0: raise ValueError( 'current prefixlen is %d, cannot have a prefixlen_diff of %d' % (self.prefixlen, prefixlen_diff)) return self.__class__(( int(self.network_address) & (int(self.netmask) << prefixlen_diff), new_prefixlen )) @property def is_multicast(self): """Test if the address is reserved for multicast use. Returns: A boolean, True if the address is a multicast address. See RFC 2373 2.7 for details. """ return (self.network_address.is_multicast and self.broadcast_address.is_multicast) @staticmethod def _is_subnet_of(a, b): try: # Always false if one is v4 and the other is v6. if a._version != b._version: raise TypeError(f"{a} and {b} are not of the same version") return (b.network_address <= a.network_address and b.broadcast_address >= a.broadcast_address) except AttributeError: raise TypeError(f"Unable to test subnet containment " f"between {a} and {b}") def subnet_of(self, other): """Return True if this network is a subnet of other.""" return self._is_subnet_of(self, other) def supernet_of(self, other): """Return True if this network is a supernet of other.""" return self._is_subnet_of(other, self) @property def is_reserved(self): """Test if the address is otherwise IETF reserved. Returns: A boolean, True if the address is within one of the reserved IPv6 Network ranges. """ return (self.network_address.is_reserved and self.broadcast_address.is_reserved) @property def is_link_local(self): """Test if the address is reserved for link-local. Returns: A boolean, True if the address is reserved per RFC 4291. """ return (self.network_address.is_link_local and self.broadcast_address.is_link_local) @property def is_private(self): """Test if this address is allocated for private networks. Returns: A boolean, True if the address is reserved per iana-ipv4-special-registry or iana-ipv6-special-registry. """ return (self.network_address.is_private and self.broadcast_address.is_private) @property def is_global(self): """Test if this address is allocated for public networks. Returns: A boolean, True if the address is not reserved per iana-ipv4-special-registry or iana-ipv6-special-registry. """ return not self.is_private @property def is_unspecified(self): """Test if the address is unspecified. Returns: A boolean, True if this is the unspecified address as defined in RFC 2373 2.5.2. """ return (self.network_address.is_unspecified and self.broadcast_address.is_unspecified) @property def is_loopback(self): """Test if the address is a loopback address. Returns: A boolean, True if the address is a loopback address as defined in RFC 2373 2.5.3. """ return (self.network_address.is_loopback and self.broadcast_address.is_loopback) class _BaseV4: """Base IPv4 object. The following methods are used by IPv4 objects in both single IP addresses and networks. """ __slots__ = () _version = 4 # Equivalent to 255.255.255.255 or 32 bits of 1's. _ALL_ONES = (2**IPV4LENGTH) - 1 _max_prefixlen = IPV4LENGTH # There are only a handful of valid v4 netmasks, so we cache them all # when constructed (see _make_netmask()). _netmask_cache = {} def _explode_shorthand_ip_string(self): return str(self) @classmethod def _make_netmask(cls, arg): """Make a (netmask, prefix_len) tuple from the given argument. Argument can be: - an integer (the prefix length) - a string representing the prefix length (e.g. "24") - a string representing the prefix netmask (e.g. "255.255.255.0") """ if arg not in cls._netmask_cache: if isinstance(arg, int): prefixlen = arg if not (0 <= prefixlen <= cls._max_prefixlen): cls._report_invalid_netmask(prefixlen) else: try: # Check for a netmask in prefix length form prefixlen = cls._prefix_from_prefix_string(arg) except NetmaskValueError: # Check for a netmask or hostmask in dotted-quad form. # This may raise NetmaskValueError. prefixlen = cls._prefix_from_ip_string(arg) netmask = IPv4Address(cls._ip_int_from_prefix(prefixlen)) cls._netmask_cache[arg] = netmask, prefixlen return cls._netmask_cache[arg] @classmethod def _ip_int_from_string(cls, ip_str): """Turn the given IP string into an integer for comparison. Args: ip_str: A string, the IP ip_str. Returns: The IP ip_str as an integer. Raises: AddressValueError: if ip_str isn't a valid IPv4 Address. """ if not ip_str: raise AddressValueError('Address cannot be empty') octets = ip_str.split('.') if len(octets) != 4: raise AddressValueError("Expected 4 octets in %r" % ip_str) try: return int.from_bytes(map(cls._parse_octet, octets), 'big') except ValueError as exc: raise AddressValueError("%s in %r" % (exc, ip_str)) from None @classmethod def _parse_octet(cls, octet_str): """Convert a decimal octet into an integer. Args: octet_str: A string, the number to parse. Returns: The octet as an integer. Raises: ValueError: if the octet isn't strictly a decimal from [0..255]. """ if not octet_str: raise ValueError("Empty octet not permitted") # Whitelist the characters, since int() allows a lot of bizarre stuff. if not (octet_str.isascii() and octet_str.isdigit()): msg = "Only decimal digits permitted in %r" raise ValueError(msg % octet_str) # We do the length check second, since the invalid character error # is likely to be more informative for the user if len(octet_str) > 3: msg = "At most 3 characters permitted in %r" raise ValueError(msg % octet_str) # Handle leading zeros as strict as glibc's inet_pton() # See security bug bpo-36384 if octet_str != '0' and octet_str[0] == '0': msg = "Leading zeros are not permitted in %r" raise ValueError(msg % octet_str) # Convert to integer (we know digits are legal) octet_int = int(octet_str, 10) if octet_int > 255: raise ValueError("Octet %d (> 255) not permitted" % octet_int) return octet_int @classmethod def _string_from_ip_int(cls, ip_int): """Turns a 32-bit integer into dotted decimal notation. Args: ip_int: An integer, the IP address. Returns: The IP address as a string in dotted decimal notation. """ return '.'.join(map(str, ip_int.to_bytes(4, 'big'))) def _reverse_pointer(self): """Return the reverse DNS pointer name for the IPv4 address. This implements the method described in RFC1035 3.5. """ reverse_octets = str(self).split('.')[::-1] return '.'.join(reverse_octets) + '.in-addr.arpa' @property def max_prefixlen(self): return self._max_prefixlen @property def version(self): return self._version class IPv4Address(_BaseV4, _BaseAddress): """Represent and manipulate single IPv4 Addresses.""" __slots__ = ('_ip', '__weakref__') def __init__(self, address): """ Args: address: A string or integer representing the IP Additionally, an integer can be passed, so IPv4Address('192.0.2.1') == IPv4Address(3221225985). or, more generally IPv4Address(int(IPv4Address('192.0.2.1'))) == IPv4Address('192.0.2.1') Raises: AddressValueError: If ipaddress isn't a valid IPv4 address. """ # Efficient constructor from integer. if isinstance(address, int): self._check_int_address(address) self._ip = address return # Constructing from a packed address if isinstance(address, bytes): self._check_packed_address(address, 4) self._ip = int.from_bytes(address, 'big') return # Assume input argument to be string or any object representation # which converts into a formatted IP string. addr_str = str(address) if '/' in addr_str: raise AddressValueError(f"Unexpected '/' in {address!r}") self._ip = self._ip_int_from_string(addr_str) @property def packed(self): """The binary representation of this address.""" return v4_int_to_packed(self._ip) @property def is_reserved(self): """Test if the address is otherwise IETF reserved. Returns: A boolean, True if the address is within the reserved IPv4 Network range. """ return self in self._constants._reserved_network @property @functools.lru_cache() def is_private(self): """``True`` if the address is defined as not globally reachable by iana-ipv4-special-registry_ (for IPv4) or iana-ipv6-special-registry_ (for IPv6) with the following exceptions: * ``is_private`` is ``False`` for ``100.64.0.0/10`` * For IPv4-mapped IPv6-addresses the ``is_private`` value is determined by the semantics of the underlying IPv4 addresses and the following condition holds (see :attr:`IPv6Address.ipv4_mapped`):: address.is_private == address.ipv4_mapped.is_private ``is_private`` has value opposite to :attr:`is_global`, except for the ``100.64.0.0/10`` IPv4 range where they are both ``False``. """ return ( any(self in net for net in self._constants._private_networks) and all(self not in net for net in self._constants._private_networks_exceptions) ) @property @functools.lru_cache() def is_global(self): """``True`` if the address is defined as globally reachable by iana-ipv4-special-registry_ (for IPv4) or iana-ipv6-special-registry_ (for IPv6) with the following exception: For IPv4-mapped IPv6-addresses the ``is_private`` value is determined by the semantics of the underlying IPv4 addresses and the following condition holds (see :attr:`IPv6Address.ipv4_mapped`):: address.is_global == address.ipv4_mapped.is_global ``is_global`` has value opposite to :attr:`is_private`, except for the ``100.64.0.0/10`` IPv4 range where they are both ``False``. """ return self not in self._constants._public_network and not self.is_private @property def is_multicast(self): """Test if the address is reserved for multicast use. Returns: A boolean, True if the address is multicast. See RFC 3171 for details. """ return self in self._constants._multicast_network @property def is_unspecified(self): """Test if the address is unspecified. Returns: A boolean, True if this is the unspecified address as defined in RFC 5735 3. """ return self == self._constants._unspecified_address @property def is_loopback(self): """Test if the address is a loopback address. Returns: A boolean, True if the address is a loopback per RFC 3330. """ return self in self._constants._loopback_network @property def is_link_local(self): """Test if the address is reserved for link-local. Returns: A boolean, True if the address is link-local per RFC 3927. """ return self in self._constants._linklocal_network class IPv4Interface(IPv4Address): def __init__(self, address): addr, mask = self._split_addr_prefix(address) IPv4Address.__init__(self, addr) self.network = IPv4Network((addr, mask), strict=False) self.netmask = self.network.netmask self._prefixlen = self.network._prefixlen @functools.cached_property def hostmask(self): return self.network.hostmask def __str__(self): return '%s/%d' % (self._string_from_ip_int(self._ip), self._prefixlen) def __eq__(self, other): address_equal = IPv4Address.__eq__(self, other) if address_equal is NotImplemented or not address_equal: return address_equal try: return self.network == other.network except AttributeError: # An interface with an associated network is NOT the # same as an unassociated address. That's why the hash # takes the extra info into account. return False def __lt__(self, other): address_less = IPv4Address.__lt__(self, other) if address_less is NotImplemented: return NotImplemented try: return (self.network < other.network or self.network == other.network and address_less) except AttributeError: # We *do* allow addresses and interfaces to be sorted. The # unassociated address is considered less than all interfaces. return False def __hash__(self): return hash((self._ip, self._prefixlen, int(self.network.network_address))) __reduce__ = _IPAddressBase.__reduce__ @property def ip(self): return IPv4Address(self._ip) @property def with_prefixlen(self): return '%s/%s' % (self._string_from_ip_int(self._ip), self._prefixlen) @property def with_netmask(self): return '%s/%s' % (self._string_from_ip_int(self._ip), self.netmask) @property def with_hostmask(self): return '%s/%s' % (self._string_from_ip_int(self._ip), self.hostmask) class IPv4Network(_BaseV4, _BaseNetwork): """This class represents and manipulates 32-bit IPv4 network + addresses.. Attributes: [examples for IPv4Network('192.0.2.0/27')] .network_address: IPv4Address('192.0.2.0') .hostmask: IPv4Address('0.0.0.31') .broadcast_address: IPv4Address('192.0.2.32') .netmask: IPv4Address('255.255.255.224') .prefixlen: 27 """ # Class to use when creating address objects _address_class = IPv4Address def __init__(self, address, strict=True): """Instantiate a new IPv4 network object. Args: address: A string or integer representing the IP [& network]. '192.0.2.0/24' '192.0.2.0/255.255.255.0' '192.0.2.0/0.0.0.255' are all functionally the same in IPv4. Similarly, '192.0.2.1' '192.0.2.1/255.255.255.255' '192.0.2.1/32' are also functionally equivalent. That is to say, failing to provide a subnetmask will create an object with a mask of /32. If the mask (portion after the / in the argument) is given in dotted quad form, it is treated as a netmask if it starts with a non-zero field (e.g. /255.0.0.0 == /8) and as a hostmask if it starts with a zero field (e.g. 0.255.255.255 == /8), with the single exception of an all-zero mask which is treated as a netmask == /0. If no mask is given, a default of /32 is used. Additionally, an integer can be passed, so IPv4Network('192.0.2.1') == IPv4Network(3221225985) or, more generally IPv4Interface(int(IPv4Interface('192.0.2.1'))) == IPv4Interface('192.0.2.1') Raises: AddressValueError: If ipaddress isn't a valid IPv4 address. NetmaskValueError: If the netmask isn't valid for an IPv4 address. ValueError: If strict is True and a network address is not supplied. """ addr, mask = self._split_addr_prefix(address) self.network_address = IPv4Address(addr) self.netmask, self._prefixlen = self._make_netmask(mask) packed = int(self.network_address) if packed & int(self.netmask) != packed: if strict: raise ValueError('%s has host bits set' % self) else: self.network_address = IPv4Address(packed & int(self.netmask)) if self._prefixlen == (self._max_prefixlen - 1): self.hosts = self.__iter__ elif self._prefixlen == (self._max_prefixlen): self.hosts = lambda: [IPv4Address(addr)] @property @functools.lru_cache() def is_global(self): """Test if this address is allocated for public networks. Returns: A boolean, True if the address is not reserved per iana-ipv4-special-registry. """ return (not (self.network_address in IPv4Network('100.64.0.0/10') and self.broadcast_address in IPv4Network('100.64.0.0/10')) and not self.is_private) class _IPv4Constants: _linklocal_network = IPv4Network('169.254.0.0/16') _loopback_network = IPv4Network('127.0.0.0/8') _multicast_network = IPv4Network('224.0.0.0/4') _public_network = IPv4Network('100.64.0.0/10') # Not globally reachable address blocks listed on # https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml _private_networks = [ IPv4Network('0.0.0.0/8'), IPv4Network('10.0.0.0/8'), IPv4Network('127.0.0.0/8'), IPv4Network('169.254.0.0/16'), IPv4Network('172.16.0.0/12'), IPv4Network('192.0.0.0/24'), IPv4Network('192.0.0.170/31'), IPv4Network('192.0.2.0/24'), IPv4Network('192.168.0.0/16'), IPv4Network('198.18.0.0/15'), IPv4Network('198.51.100.0/24'), IPv4Network('203.0.113.0/24'), IPv4Network('240.0.0.0/4'), IPv4Network('255.255.255.255/32'), ] _private_networks_exceptions = [ IPv4Network('192.0.0.9/32'), IPv4Network('192.0.0.10/32'), ] _reserved_network = IPv4Network('240.0.0.0/4') _unspecified_address = IPv4Address('0.0.0.0') IPv4Address._constants = _IPv4Constants class _BaseV6: """Base IPv6 object. The following methods are used by IPv6 objects in both single IP addresses and networks. """ __slots__ = () _version = 6 _ALL_ONES = (2**IPV6LENGTH) - 1 _HEXTET_COUNT = 8 _HEX_DIGITS = frozenset('0123456789ABCDEFabcdef') _max_prefixlen = IPV6LENGTH # There are only a bunch of valid v6 netmasks, so we cache them all # when constructed (see _make_netmask()). _netmask_cache = {} @classmethod def _make_netmask(cls, arg): """Make a (netmask, prefix_len) tuple from the given argument. Argument can be: - an integer (the prefix length) - a string representing the prefix length (e.g. "24") - a string representing the prefix netmask (e.g. "255.255.255.0") """ if arg not in cls._netmask_cache: if isinstance(arg, int): prefixlen = arg if not (0 <= prefixlen <= cls._max_prefixlen): cls._report_invalid_netmask(prefixlen) else: prefixlen = cls._prefix_from_prefix_string(arg) netmask = IPv6Address(cls._ip_int_from_prefix(prefixlen)) cls._netmask_cache[arg] = netmask, prefixlen return cls._netmask_cache[arg] @classmethod def _ip_int_from_string(cls, ip_str): """Turn an IPv6 ip_str into an integer. Args: ip_str: A string, the IPv6 ip_str. Returns: An int, the IPv6 address Raises: AddressValueError: if ip_str isn't a valid IPv6 Address. """ if not ip_str: raise AddressValueError('Address cannot be empty') parts = ip_str.split(':') # An IPv6 address needs at least 2 colons (3 parts). _min_parts = 3 if len(parts) < _min_parts: msg = "At least %d parts expected in %r" % (_min_parts, ip_str) raise AddressValueError(msg) # If the address has an IPv4-style suffix, convert it to hexadecimal. if '.' in parts[-1]: try: ipv4_int = IPv4Address(parts.pop())._ip except AddressValueError as exc: raise AddressValueError("%s in %r" % (exc, ip_str)) from None parts.append('%x' % ((ipv4_int >> 16) & 0xFFFF)) parts.append('%x' % (ipv4_int & 0xFFFF)) # An IPv6 address can't have more than 8 colons (9 parts). # The extra colon comes from using the "::" notation for a single # leading or trailing zero part. _max_parts = cls._HEXTET_COUNT + 1 if len(parts) > _max_parts: msg = "At most %d colons permitted in %r" % (_max_parts-1, ip_str) raise AddressValueError(msg) # Disregarding the endpoints, find '::' with nothing in between. # This indicates that a run of zeroes has been skipped. skip_index = None for i in range(1, len(parts) - 1): if not parts[i]: if skip_index is not None: # Can't have more than one '::' msg = "At most one '::' permitted in %r" % ip_str raise AddressValueError(msg) skip_index = i # parts_hi is the number of parts to copy from above/before the '::' # parts_lo is the number of parts to copy from below/after the '::' if skip_index is not None: # If we found a '::', then check if it also covers the endpoints. parts_hi = skip_index parts_lo = len(parts) - skip_index - 1 if not parts[0]: parts_hi -= 1 if parts_hi: msg = "Leading ':' only permitted as part of '::' in %r" raise AddressValueError(msg % ip_str) # ^: requires ^:: if not parts[-1]: parts_lo -= 1 if parts_lo: msg = "Trailing ':' only permitted as part of '::' in %r" raise AddressValueError(msg % ip_str) # :$ requires ::$ parts_skipped = cls._HEXTET_COUNT - (parts_hi + parts_lo) if parts_skipped < 1: msg = "Expected at most %d other parts with '::' in %r" raise AddressValueError(msg % (cls._HEXTET_COUNT-1, ip_str)) else: # Otherwise, allocate the entire address to parts_hi. The # endpoints could still be empty, but _parse_hextet() will check # for that. if len(parts) != cls._HEXTET_COUNT: msg = "Exactly %d parts expected without '::' in %r" raise AddressValueError(msg % (cls._HEXTET_COUNT, ip_str)) if not parts[0]: msg = "Leading ':' only permitted as part of '::' in %r" raise AddressValueError(msg % ip_str) # ^: requires ^:: if not parts[-1]: msg = "Trailing ':' only permitted as part of '::' in %r" raise AddressValueError(msg % ip_str) # :$ requires ::$ parts_hi = len(parts) parts_lo = 0 parts_skipped = 0 try: # Now, parse the hextets into a 128-bit integer. ip_int = 0 for i in range(parts_hi): ip_int <<= 16 ip_int |= cls._parse_hextet(parts[i]) ip_int <<= 16 * parts_skipped for i in range(-parts_lo, 0): ip_int <<= 16 ip_int |= cls._parse_hextet(parts[i]) return ip_int except ValueError as exc: raise AddressValueError("%s in %r" % (exc, ip_str)) from None @classmethod def _parse_hextet(cls, hextet_str): """Convert an IPv6 hextet string into an integer. Args: hextet_str: A string, the number to parse. Returns: The hextet as an integer. Raises: ValueError: if the input isn't strictly a hex number from [0..FFFF]. """ # Whitelist the characters, since int() allows a lot of bizarre stuff. if not cls._HEX_DIGITS.issuperset(hextet_str): raise ValueError("Only hex digits permitted in %r" % hextet_str) # We do the length check second, since the invalid character error # is likely to be more informative for the user if len(hextet_str) > 4: msg = "At most 4 characters permitted in %r" raise ValueError(msg % hextet_str) # Length check means we can skip checking the integer value return int(hextet_str, 16) @classmethod def _compress_hextets(cls, hextets): """Compresses a list of hextets. Compresses a list of strings, replacing the longest continuous sequence of "0" in the list with "" and adding empty strings at the beginning or at the end of the string such that subsequently calling ":".join(hextets) will produce the compressed version of the IPv6 address. Args: hextets: A list of strings, the hextets to compress. Returns: A list of strings. """ best_doublecolon_start = -1 best_doublecolon_len = 0 doublecolon_start = -1 doublecolon_len = 0 for index, hextet in enumerate(hextets): if hextet == '0': doublecolon_len += 1 if doublecolon_start == -1: # Start of a sequence of zeros. doublecolon_start = index if doublecolon_len > best_doublecolon_len: # This is the longest sequence of zeros so far. best_doublecolon_len = doublecolon_len best_doublecolon_start = doublecolon_start else: doublecolon_len = 0 doublecolon_start = -1 if best_doublecolon_len > 1: best_doublecolon_end = (best_doublecolon_start + best_doublecolon_len) # For zeros at the end of the address. if best_doublecolon_end == len(hextets): hextets += [''] hextets[best_doublecolon_start:best_doublecolon_end] = [''] # For zeros at the beginning of the address. if best_doublecolon_start == 0: hextets = [''] + hextets return hextets @classmethod def _string_from_ip_int(cls, ip_int=None): """Turns a 128-bit integer into hexadecimal notation. Args: ip_int: An integer, the IP address. Returns: A string, the hexadecimal representation of the address. Raises: ValueError: The address is bigger than 128 bits of all ones. """ if ip_int is None: ip_int = int(cls._ip) if ip_int > cls._ALL_ONES: raise ValueError('IPv6 address is too large') hex_str = '%032x' % ip_int hextets = ['%x' % int(hex_str[x:x+4], 16) for x in range(0, 32, 4)] hextets = cls._compress_hextets(hextets) return ':'.join(hextets) def _explode_shorthand_ip_string(self): """Expand a shortened IPv6 address. Returns: A string, the expanded IPv6 address. """ if isinstance(self, IPv6Network): ip_str = str(self.network_address) elif isinstance(self, IPv6Interface): ip_str = str(self.ip) else: ip_str = str(self) ip_int = self._ip_int_from_string(ip_str) hex_str = '%032x' % ip_int parts = [hex_str[x:x+4] for x in range(0, 32, 4)] if isinstance(self, (_BaseNetwork, IPv6Interface)): return '%s/%d' % (':'.join(parts), self._prefixlen) return ':'.join(parts) def _reverse_pointer(self): """Return the reverse DNS pointer name for the IPv6 address. This implements the method described in RFC3596 2.5. """ reverse_chars = self.exploded[::-1].replace(':', '') return '.'.join(reverse_chars) + '.ip6.arpa' @staticmethod def _split_scope_id(ip_str): """Helper function to parse IPv6 string address with scope id. See RFC 4007 for details. Args: ip_str: A string, the IPv6 address. Returns: (addr, scope_id) tuple. """ addr, sep, scope_id = ip_str.partition('%') if not sep: scope_id = None elif not scope_id or '%' in scope_id: raise AddressValueError('Invalid IPv6 address: "%r"' % ip_str) return addr, scope_id @property def max_prefixlen(self): return self._max_prefixlen @property def version(self): return self._version class IPv6Address(_BaseV6, _BaseAddress): """Represent and manipulate single IPv6 Addresses.""" __slots__ = ('_ip', '_scope_id', '__weakref__') def __init__(self, address): """Instantiate a new IPv6 address object. Args: address: A string or integer representing the IP Additionally, an integer can be passed, so IPv6Address('2001:db8::') == IPv6Address(42540766411282592856903984951653826560) or, more generally IPv6Address(int(IPv6Address('2001:db8::'))) == IPv6Address('2001:db8::') Raises: AddressValueError: If address isn't a valid IPv6 address. """ # Efficient constructor from integer. if isinstance(address, int): self._check_int_address(address) self._ip = address self._scope_id = None return # Constructing from a packed address if isinstance(address, bytes): self._check_packed_address(address, 16) self._ip = int.from_bytes(address, 'big') self._scope_id = None return # Assume input argument to be string or any object representation # which converts into a formatted IP string. addr_str = str(address) if '/' in addr_str: raise AddressValueError(f"Unexpected '/' in {address!r}") addr_str, self._scope_id = self._split_scope_id(addr_str) self._ip = self._ip_int_from_string(addr_str) def __str__(self): ip_str = super().__str__() return ip_str + '%' + self._scope_id if self._scope_id else ip_str def __hash__(self): return hash((self._ip, self._scope_id)) def __eq__(self, other): address_equal = super().__eq__(other) if address_equal is NotImplemented: return NotImplemented if not address_equal: return False return self._scope_id == getattr(other, '_scope_id', None) @property def scope_id(self): """Identifier of a particular zone of the address's scope. See RFC 4007 for details. Returns: A string identifying the zone of the address if specified, else None. """ return self._scope_id @property def packed(self): """The binary representation of this address.""" return v6_int_to_packed(self._ip) @property def is_multicast(self): """Test if the address is reserved for multicast use. Returns: A boolean, True if the address is a multicast address. See RFC 2373 2.7 for details. """ ipv4_mapped = self.ipv4_mapped if ipv4_mapped is not None: return ipv4_mapped.is_multicast return self in self._constants._multicast_network @property def is_reserved(self): """Test if the address is otherwise IETF reserved. Returns: A boolean, True if the address is within one of the reserved IPv6 Network ranges. """ ipv4_mapped = self.ipv4_mapped if ipv4_mapped is not None: return ipv4_mapped.is_reserved return any(self in x for x in self._constants._reserved_networks) @property def is_link_local(self): """Test if the address is reserved for link-local. Returns: A boolean, True if the address is reserved per RFC 4291. """ ipv4_mapped = self.ipv4_mapped if ipv4_mapped is not None: return ipv4_mapped.is_link_local return self in self._constants._linklocal_network @property def is_site_local(self): """Test if the address is reserved for site-local. Note that the site-local address space has been deprecated by RFC 3879. Use is_private to test if this address is in the space of unique local addresses as defined by RFC 4193. Returns: A boolean, True if the address is reserved per RFC 3513 2.5.6. """ return self in self._constants._sitelocal_network @property @functools.lru_cache() def is_private(self): """``True`` if the address is defined as not globally reachable by iana-ipv4-special-registry_ (for IPv4) or iana-ipv6-special-registry_ (for IPv6) with the following exceptions: * ``is_private`` is ``False`` for ``100.64.0.0/10`` * For IPv4-mapped IPv6-addresses the ``is_private`` value is determined by the semantics of the underlying IPv4 addresses and the following condition holds (see :attr:`IPv6Address.ipv4_mapped`):: address.is_private == address.ipv4_mapped.is_private ``is_private`` has value opposite to :attr:`is_global`, except for the ``100.64.0.0/10`` IPv4 range where they are both ``False``. """ ipv4_mapped = self.ipv4_mapped if ipv4_mapped is not None: return ipv4_mapped.is_private return ( any(self in net for net in self._constants._private_networks) and all(self not in net for net in self._constants._private_networks_exceptions) ) @property def is_global(self): """``True`` if the address is defined as globally reachable by iana-ipv4-special-registry_ (for IPv4) or iana-ipv6-special-registry_ (for IPv6) with the following exception: For IPv4-mapped IPv6-addresses the ``is_private`` value is determined by the semantics of the underlying IPv4 addresses and the following condition holds (see :attr:`IPv6Address.ipv4_mapped`):: address.is_global == address.ipv4_mapped.is_global ``is_global`` has value opposite to :attr:`is_private`, except for the ``100.64.0.0/10`` IPv4 range where they are both ``False``. """ ipv4_mapped = self.ipv4_mapped if ipv4_mapped is not None: return ipv4_mapped.is_global return not self.is_private @property def is_unspecified(self): """Test if the address is unspecified. Returns: A boolean, True if this is the unspecified address as defined in RFC 2373 2.5.2. """ ipv4_mapped = self.ipv4_mapped if ipv4_mapped is not None: return ipv4_mapped.is_unspecified return self._ip == 0 @property def is_loopback(self): """Test if the address is a loopback address. Returns: A boolean, True if the address is a loopback address as defined in RFC 2373 2.5.3. """ ipv4_mapped = self.ipv4_mapped if ipv4_mapped is not None: return ipv4_mapped.is_loopback return self._ip == 1 @property def ipv4_mapped(self): """Return the IPv4 mapped address. Returns: If the IPv6 address is a v4 mapped address, return the IPv4 mapped address. Return None otherwise. """ if (self._ip >> 32) != 0xFFFF: return None return IPv4Address(self._ip & 0xFFFFFFFF) @property def teredo(self): """Tuple of embedded teredo IPs. Returns: Tuple of the (server, client) IPs or None if the address doesn't appear to be a teredo address (doesn't start with 2001::/32) """ if (self._ip >> 96) != 0x20010000: return None return (IPv4Address((self._ip >> 64) & 0xFFFFFFFF), IPv4Address(~self._ip & 0xFFFFFFFF)) @property def sixtofour(self): """Return the IPv4 6to4 embedded address. Returns: The IPv4 6to4-embedded address if present or None if the address doesn't appear to contain a 6to4 embedded address. """ if (self._ip >> 112) != 0x2002: return None return IPv4Address((self._ip >> 80) & 0xFFFFFFFF) class IPv6Interface(IPv6Address): def __init__(self, address): addr, mask = self._split_addr_prefix(address) IPv6Address.__init__(self, addr) self.network = IPv6Network((addr, mask), strict=False) self.netmask = self.network.netmask self._prefixlen = self.network._prefixlen @functools.cached_property def hostmask(self): return self.network.hostmask def __str__(self): return '%s/%d' % (super().__str__(), self._prefixlen) def __eq__(self, other): address_equal = IPv6Address.__eq__(self, other) if address_equal is NotImplemented or not address_equal: return address_equal try: return self.network == other.network except AttributeError: # An interface with an associated network is NOT the # same as an unassociated address. That's why the hash # takes the extra info into account. return False def __lt__(self, other): address_less = IPv6Address.__lt__(self, other) if address_less is NotImplemented: return address_less try: return (self.network < other.network or self.network == other.network and address_less) except AttributeError: # We *do* allow addresses and interfaces to be sorted. The # unassociated address is considered less than all interfaces. return False def __hash__(self): return hash((self._ip, self._prefixlen, int(self.network.network_address))) __reduce__ = _IPAddressBase.__reduce__ @property def ip(self): return IPv6Address(self._ip) @property def with_prefixlen(self): return '%s/%s' % (self._string_from_ip_int(self._ip), self._prefixlen) @property def with_netmask(self): return '%s/%s' % (self._string_from_ip_int(self._ip), self.netmask) @property def with_hostmask(self): return '%s/%s' % (self._string_from_ip_int(self._ip), self.hostmask) @property def is_unspecified(self): return self._ip == 0 and self.network.is_unspecified @property def is_loopback(self): return super().is_loopback and self.network.is_loopback class IPv6Network(_BaseV6, _BaseNetwork): """This class represents and manipulates 128-bit IPv6 networks. Attributes: [examples for IPv6('2001:db8::1000/124')] .network_address: IPv6Address('2001:db8::1000') .hostmask: IPv6Address('::f') .broadcast_address: IPv6Address('2001:db8::100f') .netmask: IPv6Address('ffff:ffff:ffff:ffff:ffff:ffff:ffff:fff0') .prefixlen: 124 """ # Class to use when creating address objects _address_class = IPv6Address def __init__(self, address, strict=True): """Instantiate a new IPv6 Network object. Args: address: A string or integer representing the IPv6 network or the IP and prefix/netmask. '2001:db8::/128' '2001:db8:0000:0000:0000:0000:0000:0000/128' '2001:db8::' are all functionally the same in IPv6. That is to say, failing to provide a subnetmask will create an object with a mask of /128. Additionally, an integer can be passed, so IPv6Network('2001:db8::') == IPv6Network(42540766411282592856903984951653826560) or, more generally IPv6Network(int(IPv6Network('2001:db8::'))) == IPv6Network('2001:db8::') strict: A boolean. If true, ensure that we have been passed A true network address, eg, 2001:db8::1000/124 and not an IP address on a network, eg, 2001:db8::1/124. Raises: AddressValueError: If address isn't a valid IPv6 address. NetmaskValueError: If the netmask isn't valid for an IPv6 address. ValueError: If strict was True and a network address was not supplied. """ addr, mask = self._split_addr_prefix(address) self.network_address = IPv6Address(addr) self.netmask, self._prefixlen = self._make_netmask(mask) packed = int(self.network_address) if packed & int(self.netmask) != packed: if strict: raise ValueError('%s has host bits set' % self) else: self.network_address = IPv6Address(packed & int(self.netmask)) if self._prefixlen == (self._max_prefixlen - 1): self.hosts = self.__iter__ elif self._prefixlen == self._max_prefixlen: self.hosts = lambda: [IPv6Address(addr)] def hosts(self): """Generate Iterator over usable hosts in a network. This is like __iter__ except it doesn't return the Subnet-Router anycast address. """ network = int(self.network_address) broadcast = int(self.broadcast_address) for x in range(network + 1, broadcast + 1): yield self._address_class(x) @property def is_site_local(self): """Test if the address is reserved for site-local. Note that the site-local address space has been deprecated by RFC 3879. Use is_private to test if this address is in the space of unique local addresses as defined by RFC 4193. Returns: A boolean, True if the address is reserved per RFC 3513 2.5.6. """ return (self.network_address.is_site_local and self.broadcast_address.is_site_local) class _IPv6Constants: _linklocal_network = IPv6Network('fe80::/10') _multicast_network = IPv6Network('ff00::/8') # Not globally reachable address blocks listed on # https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml _private_networks = [ IPv6Network('::1/128'), IPv6Network('::/128'), IPv6Network('::ffff:0:0/96'), IPv6Network('64:ff9b:1::/48'), IPv6Network('100::/64'), IPv6Network('2001::/23'), IPv6Network('2001:db8::/32'), # IANA says N/A, let's consider it not globally reachable to be safe IPv6Network('2002::/16'), # RFC 9637: https://www.rfc-editor.org/rfc/rfc9637.html#section-6-2.2 IPv6Network('3fff::/20'), IPv6Network('fc00::/7'), IPv6Network('fe80::/10'), ] _private_networks_exceptions = [ IPv6Network('2001:1::1/128'), IPv6Network('2001:1::2/128'), IPv6Network('2001:3::/32'), IPv6Network('2001:4:112::/48'), IPv6Network('2001:20::/28'), IPv6Network('2001:30::/28'), ] _reserved_networks = [ IPv6Network('::/8'), IPv6Network('100::/8'), IPv6Network('200::/7'), IPv6Network('400::/6'), IPv6Network('800::/5'), IPv6Network('1000::/4'), IPv6Network('4000::/3'), IPv6Network('6000::/3'), IPv6Network('8000::/3'), IPv6Network('A000::/3'), IPv6Network('C000::/3'), IPv6Network('E000::/4'), IPv6Network('F000::/5'), IPv6Network('F800::/6'), IPv6Network('FE00::/9'), ] _sitelocal_network = IPv6Network('fec0::/10') IPv6Address._constants = _IPv6Constants